Classifications of Dupin hypersurfaces in Lie sphere geometry

被引:0
|
作者
Thomas E. Cecil
机构
[1] College of the Holy Cross,Department of Mathematics and Computer Science
来源
Acta Mathematica Scientia | 2024年 / 44卷
关键词
Dupin hypersurfaces; isoparametric hypersurfaces; Lie sphere geometry; Lie sphere transformations; Lie curvatures; 53A07; 53A40; 53B25; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
This is a survey of local and global classification results concerning Dupin hypersurfaces in Sn (or Rn) that have been obtained in the context of Lie sphere geometry. The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres. Along with these classification results, many important concepts from Lie sphere geometry, such as curvature spheres, Lie curvatures, and Legendre lifts of submanifolds of Sn (or Rn), are described in detail. The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.
引用
收藏
页码:1 / 36
页数:35
相关论文
共 50 条
  • [21] Homogeneous surfaces in Lie sphere geometry
    Li, Tongzhu
    GEOMETRIAE DEDICATA, 2010, 149 (01) : 15 - 43
  • [22] Dupin Hypersurfaces with Four Principal Curvatures
    Thomas E. Cecil
    Gary R. Jensen
    Geometriae Dedicata, 2000, 79 : 1 - 49
  • [23] Classification of surfaces in three-sphere in lie sphere geometry
    Yamazaki, T
    Yoshikawa, AY
    NAGOYA MATHEMATICAL JOURNAL, 1996, 143 : 59 - 92
  • [24] Dupin hypersurfaces with four principal curvatures
    Cecil, TE
    Jensen, GR
    GEOMETRIAE DEDICATA, 2000, 79 (01) : 1 - 49
  • [25] TAUT-EMBEDDINGS AND DUPIN HYPERSURFACES
    MIYAOKA, R
    LECTURE NOTES IN MATHEMATICS, 1984, 1090 : 15 - 23
  • [26] Dupin hypersurfaces in R5
    Riveros, CMC
    Tenenblat, K
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06): : 1291 - 1313
  • [27] Dupin hypersurfaces with three principal curvatures
    Thomas E. Cecil
    Gary R. Jensen
    Inventiones mathematicae, 1998, 132 : 121 - 178
  • [28] On Dupin hypersurfaces with constant Mubius curvature
    Riveros, Carlos M. C.
    Rodrigues, Luciana Avila
    Tenenblat, Keti
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (01) : 86 - 100
  • [29] Blaschke Dupin hypersurfaces and equiaffine tubes
    Koike N.
    Results in Mathematics, 2005, 48 (1-2) : 97 - 108
  • [30] Dupin hypersurfaces with constant Laguerre curvatures
    Miguel Cezana
    Keti Tenenblat
    manuscripta mathematica, 2017, 154 : 169 - 184