A Characterization of Some Mixed Volumes via the Brunn–Minkowski Inequality

被引:0
|
作者
Andrea Colesanti
Daniel Hug
Eugenia Saorín Gómez
机构
[1] “U. Dini”,Dipartimento di Matematica
[2] Karlsruhe Institute of Technology (KIT),Department of Mathematics
[3] Otto-von-Guericke Universität Magdeburg,Fakultät für Mathematik
来源
The Journal of Geometric Analysis | 2014年 / 24卷
关键词
Convex body; Brunn–Minkowski theory; Minkowski inequality; Valuation; Mixed volume; Area measure; Variational calculus; 52A20; 52A39; 52A40; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} on the space of convex bodies in ℝn of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{F}}(K)=\int_{\mathbb{S}^{n-1}} f(u) \mathrm{S}_{n-1}(K,du), $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C(\mathbb{S}^{n-1})$\end{document} is a given continuous function on the unit sphere of ℝn, K is a convex body in ℝn, n≥3, and Sn−1(K,⋅) is the area measure of K. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} satisfies an inequality of Brunn–Minkowski type if and only if f is the support function of a convex body, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} is a mixed volume. As a consequence, we obtain a characterization of translation invariant, continuous valuations which are homogeneous of degree n−1 and satisfy a Brunn–Minkowski type inequality.
引用
收藏
页码:1064 / 1091
页数:27
相关论文
共 50 条