A Characterization of Some Mixed Volumes via the Brunn–Minkowski Inequality

被引:0
|
作者
Andrea Colesanti
Daniel Hug
Eugenia Saorín Gómez
机构
[1] “U. Dini”,Dipartimento di Matematica
[2] Karlsruhe Institute of Technology (KIT),Department of Mathematics
[3] Otto-von-Guericke Universität Magdeburg,Fakultät für Mathematik
来源
The Journal of Geometric Analysis | 2014年 / 24卷
关键词
Convex body; Brunn–Minkowski theory; Minkowski inequality; Valuation; Mixed volume; Area measure; Variational calculus; 52A20; 52A39; 52A40; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} on the space of convex bodies in ℝn of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{F}}(K)=\int_{\mathbb{S}^{n-1}} f(u) \mathrm{S}_{n-1}(K,du), $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C(\mathbb{S}^{n-1})$\end{document} is a given continuous function on the unit sphere of ℝn, K is a convex body in ℝn, n≥3, and Sn−1(K,⋅) is the area measure of K. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} satisfies an inequality of Brunn–Minkowski type if and only if f is the support function of a convex body, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} is a mixed volume. As a consequence, we obtain a characterization of translation invariant, continuous valuations which are homogeneous of degree n−1 and satisfy a Brunn–Minkowski type inequality.
引用
收藏
页码:1064 / 1091
页数:27
相关论文
共 50 条
  • [21] The Dual φ-Brunn-Minkowski Inequality
    Shi, Wei
    Li, Tian
    Wang, Weidong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [22] Horocyclic Brunn-Minkowski inequality
    Assouline, Rotem
    Klartag, Bo'az
    ADVANCES IN MATHEMATICS, 2024, 436
  • [23] The Orlicz Brunn-Minkowski inequality
    Xi, Dongmeng
    Jin, Hailin
    Leng, Gangsong
    ADVANCES IN MATHEMATICS, 2014, 260 : 350 - 374
  • [24] A Brunn-Minkowski-type inequality
    Dar, S
    GEOMETRIAE DEDICATA, 1999, 77 (01) : 1 - 9
  • [25] Brunn-Minkowski inequality for multiplicities
    Okounkov, A
    INVENTIONES MATHEMATICAE, 1996, 125 (03) : 405 - 411
  • [26] Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals
    Wang, Weidong
    Shi, Wei
    Ye, Si
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (04): : 721 - 735
  • [27] A Brunn–Minkowski-Type Inequality
    S. Dar
    Geometriae Dedicata, 1999, 77 : 1 - 9
  • [28] THE BRUNN-MINKOWSKI-TYPE INEQUALITY
    Zhao, C. J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2010, 36 (02) : 157 - 167
  • [29] CHARACTERIZATION OF SIMPLICES VIA THE BEZOUT INEQUALITY FOR MIXED VOLUMES
    Saroglou, Christos
    Soprunov, Ivan
    Zvavitch, Artem
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5333 - 5340
  • [30] Robustness of the Gaussian concentration inequality and the Brunn–Minkowski inequality
    Marco Barchiesi
    Vesa Julin
    Calculus of Variations and Partial Differential Equations, 2017, 56