A Characterization of Some Mixed Volumes via the Brunn–Minkowski Inequality

被引:0
|
作者
Andrea Colesanti
Daniel Hug
Eugenia Saorín Gómez
机构
[1] “U. Dini”,Dipartimento di Matematica
[2] Karlsruhe Institute of Technology (KIT),Department of Mathematics
[3] Otto-von-Guericke Universität Magdeburg,Fakultät für Mathematik
来源
关键词
Convex body; Brunn–Minkowski theory; Minkowski inequality; Valuation; Mixed volume; Area measure; Variational calculus; 52A20; 52A39; 52A40; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} on the space of convex bodies in ℝn of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{F}}(K)=\int_{\mathbb{S}^{n-1}} f(u) \mathrm{S}_{n-1}(K,du), $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C(\mathbb{S}^{n-1})$\end{document} is a given continuous function on the unit sphere of ℝn, K is a convex body in ℝn, n≥3, and Sn−1(K,⋅) is the area measure of K. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} satisfies an inequality of Brunn–Minkowski type if and only if f is the support function of a convex body, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} is a mixed volume. As a consequence, we obtain a characterization of translation invariant, continuous valuations which are homogeneous of degree n−1 and satisfy a Brunn–Minkowski type inequality.
引用
收藏
页码:1064 / 1091
页数:27
相关论文
共 50 条
  • [1] A Characterization of Some Mixed Volumes via the Brunn-Minkowski Inequality
    Colesanti, Andrea
    Hug, Daniel
    Gomez, Eugenia Saorin
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 1064 - 1091
  • [2] Some Brunn-Minkowski Type Inequalities for the (p,q)-Mixed Volumes
    ZHANG Juan
    WANG Weidong
    WuhanUniversityJournalofNaturalSciences, 2020, 25 (04) : 286 - 292
  • [3] On some generalizations of the Brunn-Minkowski inequality
    Zheng, Yanpeng
    Jiang, Xiaoyu
    Chen, Xiaoting
    Alsaadi, Fawaz
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 586 : 103 - 110
  • [4] ON AN INEQUALITY OF MINKOWSKI FOR MIXED VOLUMES
    GROEMER, H
    GEOMETRIAE DEDICATA, 1990, 33 (01) : 117 - 122
  • [5] Brunn-Minkowski inequality for mixed intersection bodies
    Zhao, CJ
    Leng, GS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (01) : 115 - 123
  • [6] CYCLIC BRUNN-MINKOWSKI INEQUALITIES FOR DUAL MIXED VOLUMES
    Yu, Linmei
    Zhang, Yuanyuan
    Wang, Weidong
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2245 - 2255
  • [7] The Brunn-Minkowski inequality
    Gardner, RJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 355 - 405
  • [8] A nonabelian Brunn–Minkowski inequality
    Yifan Jing
    Chieu-Minh Tran
    Ruixiang Zhang
    Geometric and Functional Analysis, 2023, 33 : 1048 - 1100
  • [9] THE φ-BRUNN-MINKOWSKI INEQUALITY
    Lv, S. -J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 226 - 239
  • [10] THE BRUNN-MINKOWSKI-FIREY THEORY .1. MIXED VOLUMES AND THE MINKOWSKI PROBLEM
    LUTWAK, E
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 38 (01) : 131 - 150