Numerical simulation of multiple steady and unsteady flow modes in a medium-gap spherical Couette flow

被引:0
|
作者
Suhail Abbas
Li Yuan
Abdullah Shah
机构
[1] Karakorum International University,Department of Mathematical Sciences
[2] Chinese Academy of Sciences,LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
[4] COMSATS University,Department of Mathematics
关键词
Incompressible Navier–Stokes equation; WENO scheme; Line Gauss–Seidel scheme; Spherical Couette flow; Spiral wavy Taylor vortex;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multiple steady and unsteady flow modes in a medium-gap spherical Couette flow (SCF) by solving the three-dimensional incompressible Navier–Stokes equations. We have used an artificial compressibility method with an implicit line Gauss–Seidel scheme. The simulations are performed in SCF with only the inner sphere rotating. A medium-gap clearance ratio, σ=R2-R1/R1=0.25,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\left( R_{2}-R_{1}\right) /R_{1}=0.25,$$\end{document} has been used to investigate various flow states in a range of Reynolds numbers, Re∈[400,6500]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}\in [400,6500]$$\end{document}. First, we compute the 0-vortex basic flow directly from the Stokes flow as an initial condition. This flow exists up to Re=4900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=4900$$\end{document} after which it evolves into spiral 0-vortex flows with wavenumber sp=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p=3,4$$\end{document} in the range Re∈[4900,6000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4900,6000]$$\end{document}, and then the flows become turbulent when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document}. Second, we obtain the steady 1-vortex flow by using the 1-vortex flow at Re=700\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} =700$$\end{document} for σ=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.18$$\end{document} as the initial conditions and found that it exists for Re∈[480,4300]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [480,4300]$$\end{document}. The 1-vortex flow becomes wavy 1-vortex in the range Re∈[4400,5000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4400,5000]$$\end{document}. Further increasing the Reynolds number, we obtain new spiral waves of wavenumber sp=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p=3$$\end{document} for Re∈[5000,6000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}\in [5000, 6000]$$\end{document}. The flow becomes turbulent when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document}. Third, we obtain the steady 2-vortex flow by using the 2-vortex flow at Re=900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} =900$$\end{document} for σ=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.18$$\end{document} as the initial conditions and found that it exists for Re∈[700,1900]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [700,1900]$$\end{document}. With increasing Reynolds number the 2-vortex flow becomes partially wavy 2-vortex in the small range Re∈[1900,2100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [1900,2100]$$\end{document}. We obtain distorted spiral wavy 2-vortex in the range Re∈[4000,5000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4000,5000]$$\end{document}. when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document} the flow evolves into spiral 0-vortex flow and becomes turbulent. The present flow scenarios with increasing Re agree well with the experimental results and further we obtain new flow states for the 1-vortex and 2-vortex flows.
引用
收藏
相关论文
共 50 条
  • [41] Unsteady hydromagnetic Couette flow through a porous medium in a rotating system
    B.G.Prasad
    Rajnish Kumar
    [J]. Theoretical & Applied Mechanics Letters, 2011, 1 (04) : 53 - 59
  • [42] The unsteady Couette flow of a second grade fluid in a layer of porous medium
    Hayat, T
    Khan, M
    Ayub, M
    Siddiqui, AM
    [J]. ARCHIVES OF MECHANICS, 2005, 57 (05): : 405 - 416
  • [43] Numerical Simulation of Unsteady Flow in a Submersible Axial Flow Pump
    Zhang, Xiaoxu
    Zhang, Hongming
    Li, Xiaoping
    [J]. ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 486 - +
  • [44] FLOW-HISTORY EFFECT ON HIGHER MODES IN THE SPHERICAL COUETTE SYSTEM
    NAKABAYASHI, K
    TSUCHIDA, Y
    [J]. JOURNAL OF FLUID MECHANICS, 1995, 295 : 43 - 60
  • [45] Thermophoresis on Free Convective Unsteady/Steady Couette Fluid Flow with Mass Transfer
    Jha B.K.
    Sani H.N.
    [J]. International Journal of Applied and Computational Mathematics, 2021, 7 (3)
  • [46] Transition to chaos in wide gap spherical Couette flow - experiment and DNS
    Jilenko, D.
    Krivonosova, O.
    Nikitin, N.
    [J]. 15TH INTERNATIONAL COUETTE-TAYLOR WORKSHOP, 2008, 137
  • [47] Numerical simulation of Taylor Couette flow of Bingham fluids
    Jeng, Jie
    Zhu, Ke-Qin
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (19-20) : 1161 - 1170
  • [48] Numerical Simulation of Stratified Taylor-Couette Flow
    Hwang, Jong-Yeon
    Yang, Kyung-Soo
    Kim, Dong-Woo
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2006, 30 (07) : 630 - 637
  • [49] Numerical simulation of Couette-Taylor-Poiseuille flow
    Yuan, Yanping
    Ji, Honghu
    Du, Yanxia
    Xu, Liang
    [J]. Run Hua Yu Mi Feng/Lubrication Engineering, 2006, (03): : 25 - 28
  • [50] Numerical Simulation of Laminar Taylor-Couette Flow
    Morenko, I., V
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (07) : 1255 - 1260