Numerical simulation of multiple steady and unsteady flow modes in a medium-gap spherical Couette flow

被引:0
|
作者
Suhail Abbas
Li Yuan
Abdullah Shah
机构
[1] Karakorum International University,Department of Mathematical Sciences
[2] Chinese Academy of Sciences,LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
[4] COMSATS University,Department of Mathematics
关键词
Incompressible Navier–Stokes equation; WENO scheme; Line Gauss–Seidel scheme; Spherical Couette flow; Spiral wavy Taylor vortex;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multiple steady and unsteady flow modes in a medium-gap spherical Couette flow (SCF) by solving the three-dimensional incompressible Navier–Stokes equations. We have used an artificial compressibility method with an implicit line Gauss–Seidel scheme. The simulations are performed in SCF with only the inner sphere rotating. A medium-gap clearance ratio, σ=R2-R1/R1=0.25,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\left( R_{2}-R_{1}\right) /R_{1}=0.25,$$\end{document} has been used to investigate various flow states in a range of Reynolds numbers, Re∈[400,6500]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}\in [400,6500]$$\end{document}. First, we compute the 0-vortex basic flow directly from the Stokes flow as an initial condition. This flow exists up to Re=4900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=4900$$\end{document} after which it evolves into spiral 0-vortex flows with wavenumber sp=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p=3,4$$\end{document} in the range Re∈[4900,6000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4900,6000]$$\end{document}, and then the flows become turbulent when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document}. Second, we obtain the steady 1-vortex flow by using the 1-vortex flow at Re=700\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} =700$$\end{document} for σ=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.18$$\end{document} as the initial conditions and found that it exists for Re∈[480,4300]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [480,4300]$$\end{document}. The 1-vortex flow becomes wavy 1-vortex in the range Re∈[4400,5000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4400,5000]$$\end{document}. Further increasing the Reynolds number, we obtain new spiral waves of wavenumber sp=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p=3$$\end{document} for Re∈[5000,6000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}\in [5000, 6000]$$\end{document}. The flow becomes turbulent when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document}. Third, we obtain the steady 2-vortex flow by using the 2-vortex flow at Re=900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} =900$$\end{document} for σ=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.18$$\end{document} as the initial conditions and found that it exists for Re∈[700,1900]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [700,1900]$$\end{document}. With increasing Reynolds number the 2-vortex flow becomes partially wavy 2-vortex in the small range Re∈[1900,2100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [1900,2100]$$\end{document}. We obtain distorted spiral wavy 2-vortex in the range Re∈[4000,5000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4000,5000]$$\end{document}. when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document} the flow evolves into spiral 0-vortex flow and becomes turbulent. The present flow scenarios with increasing Re agree well with the experimental results and further we obtain new flow states for the 1-vortex and 2-vortex flows.
引用
收藏
相关论文
共 50 条
  • [31] Numerical Simulation of Three-Dimensional Steady and Unsteady Flow Around Blades
    Jia, Hai jun
    Wu, Hu
    Gao, Shuang lin
    Wang, Zheng
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 4, 2009, : 397 - 404
  • [32] The nonaxisymmetric instability of the wide-gap spherical Couette flow
    Araki, K
    Mizushima, J
    Yanase, S
    [J]. PHYSICS OF FLUIDS, 1997, 9 (04) : 1197 - 1199
  • [33] Application of SPH on Numerical Simulation of Two-Dimensional Steady and Unsteady Flow
    Liu, Jiang-chuan
    Yin, Zhi-gang
    Ji, Wei
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT SCIENCE (ITMS 2015), 2015, 34 : 285 - 288
  • [34] Frequency staircases in narrow-gap spherical Couette flow
    Soward, Andrew M.
    Bassom, Andrew P.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2016, 110 (02): : 166 - 197
  • [35] Routes to chaos in wide-gap spherical Couette flow
    Wulf, P
    Egbers, C
    Rath, HJ
    [J]. PHYSICS OF FLUIDS, 1999, 11 (06) : 1359 - 1372
  • [36] Flow instabilities in the wide-gap spherical Couette system
    Wicht, Johannes
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 738 : 184 - 221
  • [37] Numerical Simulation of Taylor Couette Flow in Bioreactor
    Ye, Li
    Tong, Zhengming
    Lu, Jialei
    Zhu, Kai
    Li, Chao
    [J]. APPLICATION OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 236-238 : 1000 - 1004
  • [38] NUMERICAL CALCULATION OF WINGS IN STEADY OR UNSTEADY SUPERSONIC FLOW .I. STEADY FLOW
    FENAIN, M
    GUIRAUDV.D
    [J]. RECHERCHE AEROSPATIALE, 1966, (115): : 3 - &
  • [39] Numerical Simulation of Laminar Taylor–Couette Flow
    I. V. Morenko
    [J]. Lobachevskii Journal of Mathematics, 2020, 41 : 1255 - 1260
  • [40] Unsteady hydromagnetic Couette flow through a porous medium in a rotating system
    Prasad, B. G.
    Kumar, Rajnish
    [J]. THEORETICAL AND APPLIED MECHANICS LETTERS, 2011, 1 (04)