Numerical simulation of multiple steady and unsteady flow modes in a medium-gap spherical Couette flow

被引:0
|
作者
Suhail Abbas
Li Yuan
Abdullah Shah
机构
[1] Karakorum International University,Department of Mathematical Sciences
[2] Chinese Academy of Sciences,LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
[4] COMSATS University,Department of Mathematics
关键词
Incompressible Navier–Stokes equation; WENO scheme; Line Gauss–Seidel scheme; Spherical Couette flow; Spiral wavy Taylor vortex;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multiple steady and unsteady flow modes in a medium-gap spherical Couette flow (SCF) by solving the three-dimensional incompressible Navier–Stokes equations. We have used an artificial compressibility method with an implicit line Gauss–Seidel scheme. The simulations are performed in SCF with only the inner sphere rotating. A medium-gap clearance ratio, σ=R2-R1/R1=0.25,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\left( R_{2}-R_{1}\right) /R_{1}=0.25,$$\end{document} has been used to investigate various flow states in a range of Reynolds numbers, Re∈[400,6500]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}\in [400,6500]$$\end{document}. First, we compute the 0-vortex basic flow directly from the Stokes flow as an initial condition. This flow exists up to Re=4900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}=4900$$\end{document} after which it evolves into spiral 0-vortex flows with wavenumber sp=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p=3,4$$\end{document} in the range Re∈[4900,6000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4900,6000]$$\end{document}, and then the flows become turbulent when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document}. Second, we obtain the steady 1-vortex flow by using the 1-vortex flow at Re=700\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} =700$$\end{document} for σ=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.18$$\end{document} as the initial conditions and found that it exists for Re∈[480,4300]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [480,4300]$$\end{document}. The 1-vortex flow becomes wavy 1-vortex in the range Re∈[4400,5000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4400,5000]$$\end{document}. Further increasing the Reynolds number, we obtain new spiral waves of wavenumber sp=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p=3$$\end{document} for Re∈[5000,6000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}\in [5000, 6000]$$\end{document}. The flow becomes turbulent when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document}. Third, we obtain the steady 2-vortex flow by using the 2-vortex flow at Re=900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} =900$$\end{document} for σ=0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.18$$\end{document} as the initial conditions and found that it exists for Re∈[700,1900]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [700,1900]$$\end{document}. With increasing Reynolds number the 2-vortex flow becomes partially wavy 2-vortex in the small range Re∈[1900,2100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [1900,2100]$$\end{document}. We obtain distorted spiral wavy 2-vortex in the range Re∈[4000,5000]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re} \in [4000,5000]$$\end{document}. when Re>6000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Re}>6000$$\end{document} the flow evolves into spiral 0-vortex flow and becomes turbulent. The present flow scenarios with increasing Re agree well with the experimental results and further we obtain new flow states for the 1-vortex and 2-vortex flows.
引用
收藏
相关论文
共 50 条
  • [1] Numerical simulation of multiple steady and unsteady flow modes in a medium-gap spherical Couette flow
    Abbas, Suhail
    Yuan, Li
    Shah, Abdullah
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (01)
  • [2] Numerical simulation of spherical couette flow
    Wang, HY
    Li, KT
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (1-2) : 109 - 116
  • [3] Numerical study of multiple periodic flow states in spherical Couette flow
    YUAN LiICMSEC & LSEC
    [J]. Science China Mathematics, 2004, (S1) : 81 - 91
  • [4] Numerical study of multiple periodic flow states in spherical Couette flow
    YUAN LiICMSEC LSEC Academy of Mathematics and System Sciences Chinese Academy of Sciences Beijing China email lyuanlsecccaccn
    [J]. Science in China,Ser.A., 2004, Ser.A.2004(S1) (S1) - 91
  • [5] Numerical study of multiple periodic flow states in spherical Couette flow
    Yuan, L
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (Suppl 1): : 81 - 91
  • [6] Numerical study of multiple periodic flow states in spherical Couette flow
    Li Yuan
    [J]. Science in China Series A: Mathematics, 2004, 47 : 81 - 91
  • [7] Simulation of different flow regimes in a narrow-gap spherical Couette flow
    Abbas, Suhail
    Shah, Abdullah
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 421
  • [8] NUMERICAL SIMULATION OF PIPELINE VIV FOR STEADY AND UNSTEADY FLOW
    Bhattacharjee, Pratik
    Nielsen, Kenny K.
    Stewart, Graham
    [J]. OMAE 2009, VOL 5, 2009, : 843 - 851
  • [9] A comparison of different numerical schemes in spherical Couette flow simulation
    Abbas, Suhail
    Shah, Abdullah
    Hussain, Zahid
    Hussain, Shahid
    [J]. AIP ADVANCES, 2021, 11 (01)
  • [10] Simulation of spiral instabilities in wide-gap spherical Couette flow
    Abbas, Suhail
    Yuan, Li
    Shah, Abdullah
    [J]. FLUID DYNAMICS RESEARCH, 2018, 50 (02)