Approximate Lie symmetries of the Navier-Stokes equations

被引:0
|
作者
V N Grebenev
M Oberlack
机构
[1] Institute of Computational Technologies,Chair of Fluid Dynamics
[2] Technische Universität Darmstadt,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of the theory of approximate transformation groups proposed by Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by expanding the dependent variables of the Navier-Stokes equations in the perturbation series with respect to a small parameter (viscosity) are used to derive approximate symmetries in the sense by Baikov et al.
引用
收藏
页码:157 / 163
页数:6
相关论文
共 50 条
  • [31] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [32] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [33] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [34] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [35] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [36] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [37] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [38] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179
  • [39] REGULARITY OF NAVIER-STOKES EQUATIONS
    Moise, Ioana
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (01) : 31 - 50
  • [40] Lectures on Navier-Stokes Equations
    Kunzinger, M.
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 763 - 764