Weighted composition–differentiation operators on the Hardy space

被引:0
|
作者
Kaikai Han
Maofa Wang
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Hebei University of Economics and Business,School of Mathematics and Statistics
关键词
Weighted composition–differentiation operator; Hardy space; Complex symmetry; Hermiticity; 47B33; 32A35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study weighted composition–differentiation operators on the Hardy space H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}})$$\end{document}. We investigate which combinations of weights ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} and maps of the open unit disk φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} give rise to complex symmetric weighted composition–differentiation operators with conjugation C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document}, where C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} is a Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{z}$$\end{document}-commuting conjugation on H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}})$$\end{document}. As an application, we find an equivalent condition for such an operator to be normal. In addition, we identify the Hermitian weighted composition–differentiation operators and we show that the class of all Hermitian weighted composition–differentiation operators on H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}})$$\end{document} is contained in the class of all Cξ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\xi , \theta }$$\end{document}-symmetric weighted composition–differentiation operators, where ξ,θ∈[0,2π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi , \theta \in [0,2\pi ]$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Topological Structure of the Space of Weighted Composition Operators Between Different Hardy Spaces
    Izuchi, Kei Ji
    Ohno, Shuichi
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (02) : 153 - 164
  • [42] Weighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space
    Li, Songxiao
    Stevic, Stevo
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03): : 223 - 240
  • [43] Norms of composition operators on weighted Hardy spaces
    Eva A. Gallardo-Gutiérrez
    Jonathan R. Partington
    Israel Journal of Mathematics, 2013, 196 : 273 - 283
  • [44] Norms of composition operators on weighted Hardy spaces
    Gallardo-Gutierrez, Eva A.
    Partington, Jonathan R.
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 196 (01) : 273 - 283
  • [45] Composition operators on small weighted hardy spaces
    MacCluer, BD
    Zeng, XF
    Zorboska, N
    ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (04) : 662 - 677
  • [46] Weighted composition operators on Hardy and Bergman spaces
    Kumar, R
    Partington, JR
    RECENT ADVANCES IN OPERATOR THEORY, OPEATOR ALGEBRAS, AND THEIR APPLICATIONS, 2005, 153 : 157 - 167
  • [47] Generalized composition operators on weighted Hardy spaces
    Stevic, Stevo
    Sharma, Ajay K.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8347 - 8352
  • [48] Isometric composition operators on the weighted Hardy spaces
    Jaoua, Nizar
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (11) : 1629 - 1636
  • [49] Weighted product Hardy space associated with operators
    Qingquan Deng
    Djalal Eddine Guedjiba
    Frontiers of Mathematics in China, 2020, 15 : 649 - 683
  • [50] Weighted product Hardy space associated with operators
    Deng, Qingquan
    Guedjiba, Djalal Eddine
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) : 649 - 683