Weighted composition–differentiation operators on the Hardy space

被引:0
|
作者
Kaikai Han
Maofa Wang
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Hebei University of Economics and Business,School of Mathematics and Statistics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Weighted composition–differentiation operator; Hardy space; Complex symmetry; Hermiticity; 47B33; 32A35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study weighted composition–differentiation operators on the Hardy space H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}})$$\end{document}. We investigate which combinations of weights ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} and maps of the open unit disk φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} give rise to complex symmetric weighted composition–differentiation operators with conjugation C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document}, where C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}$$\end{document} is a Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{z}$$\end{document}-commuting conjugation on H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}})$$\end{document}. As an application, we find an equivalent condition for such an operator to be normal. In addition, we identify the Hermitian weighted composition–differentiation operators and we show that the class of all Hermitian weighted composition–differentiation operators on H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}})$$\end{document} is contained in the class of all Cξ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\xi , \theta }$$\end{document}-symmetric weighted composition–differentiation operators, where ξ,θ∈[0,2π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi , \theta \in [0,2\pi ]$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES
    Al-Rawashdeh, Waleed
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (04) : 1053 - 1072
  • [32] Composition operators on the Hardy space
    Clifford, JH
    Zheng, DC
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1999, 48 (04) : 1585 - 1616
  • [33] GENERALIZED WEIGHTED COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES
    Hu, Lian
    Li, Songxiao
    Yang, Rong
    OPERATORS AND MATRICES, 2023, 17 (04): : 1109 - 1124
  • [34] On Weighted Generalized Composition Operators on Weighted Hardy Spaces
    Datt, Gopal
    Jain, Mukta
    Ohri, Neelima
    FILOMAT, 2020, 34 (05) : 1689 - 1700
  • [35] n-th Derivative Hardy Spaces and Weighted Differentiation Composition Operators
    Mostafa Hassanlou
    Ebrahim Abbasi
    Sepideh Nasresfahani
    Iranian Journal of Science, 2023, 47 (4) : 1351 - 1358
  • [36] n-th Derivative Hardy Spaces and Weighted Differentiation Composition Operators
    Hassanlou, Mostafa
    Abbasi, Ebrahim
    Nasresfahani, Sepideh
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (04) : 1351 - 1358
  • [37] Weighted differentiation composition operators from weighted bergman space to nth weighted space on the unit disk
    Zhang, Liang
    Zeng, Hong-Gang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011, : 1 - 10
  • [38] A CLASS OF INVARIANT SUBSPACES OF WEIGHTED COMPOSITION OPERATORS ON THE HARDY-HILBERT SPACE
    Anand, J.
    Srivastava, S.
    ANALYSIS MATHEMATICA, 2022, 48 (04) : 925 - 937
  • [39] Topological Structure of the Space of Weighted Composition Operators Between Different Hardy Spaces
    Kei Ji Izuchi
    Shûichi Ohno
    Integral Equations and Operator Theory, 2014, 80 : 153 - 164
  • [40] Normal weighted composition operators on the Hardy space H2(U)
    Bourdon, Paul S.
    Narayan, Sivaram K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) : 278 - 286