Modelling the monthly abundance of Culicoides biting midges in nine European countries using Random Forests machine learning

被引:0
|
作者
Ana Carolina Cuéllar
Lene Jung Kjær
Andreas Baum
Anders Stockmarr
Henrik Skovgard
Søren Achim Nielsen
Mats Gunnar Andersson
Anders Lindström
Jan Chirico
Renke Lühken
Sonja Steinke
Ellen Kiel
Jörn Gethmann
Franz J. Conraths
Magdalena Larska
Marcin Smreczak
Anna Orłowska
Inger Hamnes
Ståle Sviland
Petter Hopp
Katharina Brugger
Franz Rubel
Thomas Balenghien
Claire Garros
Ignace Rakotoarivony
Xavier Allène
Jonathan Lhoir
David Chavernac
Jean-Claude Delécolle
Bruno Mathieu
Delphine Delécolle
Marie-Laure Setier-Rio
Bethsabée Scheid
Miguel Ángel Miranda Chueca
Carlos Barceló
Javier Lucientes
Rosa Estrada
Alexander Mathis
Roger Venail
Wesley Tack
Rene Bødker
机构
[1] National Veterinary Institute,Division for Diagnostics and Scientific Advice
[2] Technical University of Denmark (DTU),Department of Applied Mathematics and Computer Science
[3] Technical University of Denmark (DTU),Department of Agroecology
[4] Aarhus University, Entomology and Plant Pathology
[5] Roskilde University,Department of Science and Environment
[6] National Veterinary Institute (SVA),Faculty of Mathematics, Informatics and Natural Sciences
[7] Universität Hamburg,Department of Biology and Environmental Sciences
[8] Bernhard Nocht Institute for Tropical Medicine,Institute of Epidemiology
[9] Carl von Ossietzky University,Department of Virology
[10] Friedrich-Loeffler-Institut,Unit of Veterinary Public Health and Epidemiology
[11] National Veterinary Research Institute,Applied Zoology and Animal Conservation Research Group
[12] Norwegian Veterinary Institute,Department of Animal Pathology
[13] University of Veterinary Medicine,Institute of Parasitology, National Centre for Vector Entomology, Vetsuisse FacultyInstitute of Parasitology, National Centre for Vector Entomology, Vetsuisse Faculty
[14] CIRAD,undefined
[15] UMR ASTRE,undefined
[16] IAV Hassan II,undefined
[17] Unité MIMC,undefined
[18] Institute of Parasitology and Tropical Pathology of Strasbourg,undefined
[19] UR7292,undefined
[20] Université de Strasbourg,undefined
[21] EID Méditerranée,undefined
[22] University of the Balearic Islands,undefined
[23] University of Zaragoza,undefined
[24] University of Zürich,undefined
[25] Avia-GIS NV,undefined
[26] Meise Botanic Garden,undefined
来源
Parasites & Vectors | / 13卷
关键词
abundance; Random Forest machine learning; Spatial predictions; Europe; Environmental variables; seasonality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 40 条
  • [31] Prediction of daily global solar radiation and air temperature using six machine learning algorithms; a case of 27 European countries
    Nematchoua, Modeste Kameni
    Orosa, Jose A.
    Afaifia, Marwa
    ECOLOGICAL INFORMATICS, 2022, 69
  • [32] Predictors of All Cause Mortality and Their Gender Differences in a Hispanic Population From Barranquilla-Colombia Using Machine Learning With Random Survival Forests
    Cure-Cure, Carlos A.
    Cure, Pablo
    Gu, Yuan
    Tian, Xin
    Patel, Tejas
    Wu, Colin O.
    Sviglin, Helena
    Sopko, George
    Csako, Gyorgy
    Cody, Sean
    Dandi, Gauri
    Hogue, Laboni
    Yan, Ye
    Farooque, Nashwan
    Gani, Nuha
    Wiese, Morgan
    Kettermann, Anna
    Domanski, Michael J.
    Almario, Navarro Eileen
    Pucino, Frank
    Rosenberg, Yves
    Hasan, Ahmed
    CIRCULATION, 2018, 138
  • [33] Exploring the growth of COVID-19 cases using exponential modelling across 42 countries and predicting signs of early containment using machine learning
    Kasilingam, Dharun
    Sathiya Prabhakaran, Sakthivel Puvaneswaran
    Rajendran, Dinesh Kumar
    Rajagopal, Varthini
    Santhosh Kumar, Thangaraj
    Soundararaj, Ajitha
    TRANSBOUNDARY AND EMERGING DISEASES, 2021, 68 (03) : 1001 - 1018
  • [34] Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods
    Şahin, Utkucan
    Ballı, Serkan
    Chen, Yan
    Applied Energy, 2021, 302
  • [35] Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods
    Sahin, Utkucan
    Balli, Serkan
    Chen, Yan
    APPLIED ENERGY, 2021, 302
  • [36] Classification of Turkey among European Countries by Years in Terms of Energy Efficiency, Total Renewable Energy, Energy Consumption, Greenhouse Gas Emission and Energy Import Dependency by Using Machine Learning
    Beken, Murat
    Hangun, Batuhan
    Eyecioglu, Onder
    2019 8TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2019), 2019, : 951 - 956
  • [37] Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European countries
    Reuter, Anna
    Smolic, Sime
    Baernighausen, Till
    Sudharsanan, Nikkil
    BMC HEALTH SERVICES RESEARCH, 2023, 23 (01)
  • [38] Predicting missed health care visits during the COVID-19 pandemic using machine learning methods: evidence from 55,500 individuals from 28 European countries
    Anna Reuter
    Šime Smolić
    Till Bärnighausen
    Nikkil Sudharsanan
    BMC Health Services Research, 23
  • [39] Radiation Metabolomics. 3. Biomarker Discovery in the Urine of Gamma-Irradiated Rats Using a Simplified Metabolomics Protocol of Gas Chromatography-Mass Spectrometry Combined with Random Forests Machine Learning Algorithm
    Lanz, Christian
    Patterson, Andrew D.
    Slavik, Josef
    Krausz, Kristopher W.
    Ledermann, Monika
    Gonzalez, Frank J.
    Idle, Jeffrey R.
    RADIATION RESEARCH, 2009, 172 (02) : 198 - 212
  • [40] National Carbon Accounting-Analyzing the Impact of Urbanization and Energy-Related Factors upon CO2 Emissions in Central-Eastern European Countries by Using Machine Learning Algorithms and Panel Data Analysis
    Nuta, Florian Marcel
    Nuta, Alina Cristina
    Zamfir, Cristina Gabriela
    Petrea, Stefan-Mihai
    Munteanu, Dan
    Cristea, Dragos Sebastian
    ENERGIES, 2021, 14 (10)