Modelling the monthly abundance of Culicoides biting midges in nine European countries using Random Forests machine learning

被引:0
|
作者
Ana Carolina Cuéllar
Lene Jung Kjær
Andreas Baum
Anders Stockmarr
Henrik Skovgard
Søren Achim Nielsen
Mats Gunnar Andersson
Anders Lindström
Jan Chirico
Renke Lühken
Sonja Steinke
Ellen Kiel
Jörn Gethmann
Franz J. Conraths
Magdalena Larska
Marcin Smreczak
Anna Orłowska
Inger Hamnes
Ståle Sviland
Petter Hopp
Katharina Brugger
Franz Rubel
Thomas Balenghien
Claire Garros
Ignace Rakotoarivony
Xavier Allène
Jonathan Lhoir
David Chavernac
Jean-Claude Delécolle
Bruno Mathieu
Delphine Delécolle
Marie-Laure Setier-Rio
Bethsabée Scheid
Miguel Ángel Miranda Chueca
Carlos Barceló
Javier Lucientes
Rosa Estrada
Alexander Mathis
Roger Venail
Wesley Tack
Rene Bødker
机构
[1] National Veterinary Institute,Division for Diagnostics and Scientific Advice
[2] Technical University of Denmark (DTU),Department of Applied Mathematics and Computer Science
[3] Technical University of Denmark (DTU),Department of Agroecology
[4] Aarhus University, Entomology and Plant Pathology
[5] Roskilde University,Department of Science and Environment
[6] National Veterinary Institute (SVA),Faculty of Mathematics, Informatics and Natural Sciences
[7] Universität Hamburg,Department of Biology and Environmental Sciences
[8] Bernhard Nocht Institute for Tropical Medicine,Institute of Epidemiology
[9] Carl von Ossietzky University,Department of Virology
[10] Friedrich-Loeffler-Institut,Unit of Veterinary Public Health and Epidemiology
[11] National Veterinary Research Institute,Applied Zoology and Animal Conservation Research Group
[12] Norwegian Veterinary Institute,Department of Animal Pathology
[13] University of Veterinary Medicine,Institute of Parasitology, National Centre for Vector Entomology, Vetsuisse FacultyInstitute of Parasitology, National Centre for Vector Entomology, Vetsuisse Faculty
[14] CIRAD,undefined
[15] UMR ASTRE,undefined
[16] IAV Hassan II,undefined
[17] Unité MIMC,undefined
[18] Institute of Parasitology and Tropical Pathology of Strasbourg,undefined
[19] UR7292,undefined
[20] Université de Strasbourg,undefined
[21] EID Méditerranée,undefined
[22] University of the Balearic Islands,undefined
[23] University of Zaragoza,undefined
[24] University of Zürich,undefined
[25] Avia-GIS NV,undefined
[26] Meise Botanic Garden,undefined
来源
Parasites & Vectors | / 13卷
关键词
abundance; Random Forest machine learning; Spatial predictions; Europe; Environmental variables; seasonality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 40 条
  • [21] Prediction of caregiver burden in amyotrophic lateral sclerosis: a machine learning approach using random forests applied to a cohort study
    Antoniadi, Anna Markella
    Galvin, Miriam
    Heverin, Mark
    Hardiman, Orla
    Mooney, Catherine
    BMJ OPEN, 2020, 10 (02):
  • [22] Morphological Identification of Bighead Carp, Silver Carp, and Grass Carp Eggs Using Random Forests Machine Learning Classification
    Camacho, Carlos A.
    Sullivan, Christopher J.
    Weber, Michael J.
    Pierce, Clay L.
    NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT, 2019, 39 (06) : 1373 - 1384
  • [23] Progression -free survival prediction of multiple myeloma patients in five European countries using machine learning models
    Witte, M. L. Pleguezuelo
    Muller, M.
    Hartmann, J.
    Ricarte, C.
    Moehler, T.
    Lopez, M.
    Jindal, K.
    ANNALS OF ONCOLOGY, 2023, 34 : S550 - S550
  • [24] A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
    Zimmerman, Naomi
    Presto, Albert A.
    Kumar, Sriniwasa P. N.
    Gu, Jason
    Hauryliuk, Aliaksei
    Robinson, Ellis S.
    Robinson, Allen L.
    Subramanian, R.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) : 291 - 313
  • [25] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Pivneva, Irina
    Balp, Maria-Magdalena
    Geissbuhler, Yvonne
    Severin, Thomas
    Smeets, Serge
    Signorovitch, James
    Royer, Jimmy
    Liang, Yawen
    Cornwall, Tom
    Pan, Jutong
    Danyliv, Andrii
    McKenna, Sarah Jane
    Marsland, Alexander M.
    Soong, Weily
    DERMATOLOGY AND THERAPY, 2022, 12 (12) : 2747 - 2763
  • [26] THE PREDICTIVE VALUE OF EMERGENCY DEPARTMENT CROWDEDNESS FOR PTSD IN ACUTE CORONARY SYNDROME: A MACHINE LEARNING APPROACH USING QUANTILE RANDOM FORESTS
    Schultebraucks, Katharina
    Zhu, Huichen
    Wei, Ying
    Chang, Bernard
    Kronish, Ian M.
    Edmondson, Donald E.
    PSYCHOSOMATIC MEDICINE, 2020, 82 (06): : A183 - A183
  • [27] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Irina Pivneva
    Maria-Magdalena Balp
    Yvonne Geissbühler
    Thomas Severin
    Serge Smeets
    James Signorovitch
    Jimmy Royer
    Yawen Liang
    Tom Cornwall
    Jutong Pan
    Andrii Danyliv
    Sarah Jane McKenna
    Alexander M. Marsland
    Weily Soong
    Dermatology and Therapy, 2022, 12 : 2747 - 2763
  • [28] Modelling monthly reference evapotranspiration estimation using machine learning approach in data-scarce North Western Himalaya region (Almora), Uttarakhand
    Utkarsh Kumar
    Journal of Earth System Science, 132
  • [29] Modelling monthly reference evapotranspiration estimation using machine learning approach in data-scarce North Western Himalaya region (Almora), Uttarakhand
    Kumar, Utkarsh
    JOURNAL OF EARTH SYSTEM SCIENCE, 2023, 132 (03)
  • [30] Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests
    Chen, Jiaxin
    Yang, Hongqiang
    Man, Rongzhou
    Wang, Weifeng
    Sharma, Mahadev
    Peng, Changhui
    Parton, John
    Zhu, Huaiping
    Deng, Ziwang
    FOREST ECOLOGY AND MANAGEMENT, 2020, 466