Homogenization of a nonstationary convection-diffusion equation in a thin rod and in a layer

被引:0
|
作者
G. Allaire
I. Pankratova
A. Piatnitski
机构
[1] Ecole Polytechnique,
[2] Narvik University College,undefined
[3] Ecole Polytechnique,undefined
[4] Lebedev Physical Institute RAS,undefined
来源
SeMA Journal | 2012年 / 58卷 / 1期
关键词
Homogenization; convection-diffusion; localization; thin cylinder; layer;
D O I
10.1007/BF03322605
中图分类号
学科分类号
摘要
The paper deals with the homogenization of a non-stationary convection-diffusion equation defined in a thin rod or in a layer with Dirichlet boundary condition. Under the assumption that the convection term is large, we describe the evolution of the solution’s profile and determine the rate of its decay. The main feature of our analysis is that we make no assumption on the support of the initial data which may touch the domain’s boundary. This requires the construction of boundary layer correctors in the homogenization process which, surprisingly, play a crucial role in the definition of the leading order term at the limit. Therefore we have to restrict our attention to simple geometries like a rod or a layer for which the definition of boundary layers is easy and explicit.
引用
收藏
页码:53 / 95
页数:42
相关论文
共 50 条
  • [31] Homogenization of a random non-stationary convection-diffusion problem
    Kleptsyna, ML
    Pyatnitskii, AL
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) : 729 - 751
  • [32] AN EMBEDDED SDG METHOD FOR THE CONVECTION-DIFFUSION EQUATION
    Cheung, Siu Wun
    Chung, Eric T.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (02) : 255 - 275
  • [33] Inversion of convection-diffusion equation with discrete sources
    Sharma, Meenarli
    Hahn, Mirko
    Leyffer, Sven
    Ruthotto, Lars
    Waanders, Bart van Bloemen
    [J]. OPTIMIZATION AND ENGINEERING, 2021, 22 (03) : 1419 - 1457
  • [34] Stationary convection-diffusion equation in an infinite cylinder
    Pettersson, Irina
    Piatnitski, Andrey
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4456 - 4487
  • [35] Bicompact Schemes for the Multidimensional Convection-Diffusion Equation
    Bragin, M. D.
    Rogov, B., V
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (04) : 607 - 624
  • [36] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    ZHAO Ming-deng
    [J]. Journal of Hydrodynamics, 2008, (01) : 47 - 53
  • [37] An exponent difference scheme for the convection-diffusion equation
    Zheng, Wen-jun
    Zong, Er-jie
    Chen, Yan
    [J]. Advances in Matrix Theory and Applications, 2006, : 467 - 469
  • [38] A block circulant preconditioner for the convection-diffusion equation
    Karaa, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 851 - 856
  • [39] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    Zhao Ming-deng
    Li Tai-ru
    Huai Wen-xin
    Li Liang-liang
    [J]. JOURNAL OF HYDRODYNAMICS, 2008, 20 (01) : 47 - 53
  • [40] Finite Proximate Method for Convection-Diffusion Equation
    Ming-deng Zhao
    Tai-ru Li
    Wen-xin Huai
    Liang-liang Li
    [J]. Journal of Hydrodynamics, 2008, 20 : 47 - 53