Inversion of convection-diffusion equation with discrete sources

被引:8
|
作者
Sharma, Meenarli [1 ]
Hahn, Mirko [2 ]
Leyffer, Sven [3 ]
Ruthotto, Lars [4 ]
Waanders, Bart van Bloemen [5 ]
机构
[1] Indian Inst Technol, Powai 400076, Maharashtra, India
[2] Otto von Guericke Univ, Univ Pl 2, Magdeburg, Germany
[3] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 50439 USA
[4] Emory Univ, 400 Dowman Dr, Atlanta, GA 30322 USA
[5] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Mixed-integer optimization; PDE-constrained optimization; Mixed-integer nonlinear programming; Source inversion; PDE-CONSTRAINED OPTIMIZATION; INTEGER OPTIMAL-CONTROL; KRYLOV-SCHUR METHODS; OIL-WELL PLACEMENT; MIXED-INTEGER; OUTER-APPROXIMATION; RELAXATION METHODS; ALGORITHM; BRANCH; FRAMEWORK;
D O I
10.1007/s11081-020-09536-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a convection-diffusion inverse problem that aims to identify an unknown number of sources and their locations. We model the sources using a binary function, and we show that the inverse problem can be formulated as a large-scale mixed-integer nonlinear optimization problem. We show empirically that current state-of-the-art mixed-integer solvers cannot solve this problem and that applying simple rounding heuristics to solutions of the relaxed problem can fail to identify the correct number and location of the sources. We develop two new rounding heuristics that exploit the value and a physical interpretation of the continuous relaxation solution, and we apply a steepest-descent improvement heuristic to obtain satisfactory solutions to both two- and three-dimensional inverse problems. We also provide the code used in our numerical experiments in open-source format.
引用
收藏
页码:1419 / 1457
页数:39
相关论文
共 50 条
  • [1] Inversion of convection–diffusion equation with discrete sources
    Meenarli Sharma
    Mirko Hahn
    Sven Leyffer
    Lars Ruthotto
    Bart van Bloemen Waanders
    [J]. Optimization and Engineering, 2021, 22 : 1419 - 1457
  • [2] DISCRETE WEIGHTED MEAN APPROXIMATION OF A MODEL CONVECTION-DIFFUSION EQUATION
    GARTLAND, EC
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (04): : 460 - 472
  • [3] ON A NONLINEAR CONVECTION-DIFFUSION EQUATION
    PASCAL, H
    [J]. PHYSICA A, 1993, 192 (04): : 562 - 568
  • [4] A nonlocal convection-diffusion equation
    Ignat, Liviu I.
    Rossi, Julio D.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 399 - 437
  • [5] Lagrangian for the convection-diffusion equation
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (15) : 1885 - 1895
  • [6] DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION
    MORTON, KW
    SOBEY, IJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) : 141 - 160
  • [7] A characterisation of oscillations in the discrete two-dimensional convection-diffusion equation
    Elman, HC
    Ramage, A
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 263 - 288
  • [8] An adaptive multigrid conjugate gradient method for the inversion of a nonlinear convection-diffusion equation
    Liu, Tao
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2018, 26 (05): : 623 - 631
  • [9] Travelling waves in a convection-diffusion equation
    Feireisl, Eduard
    Petzeltova, Hana
    Takac, Peter
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2296 - 2310
  • [10] PARABOLIC APPROXIMATIONS OF THE CONVECTION-DIFFUSION EQUATION
    LOHEAC, JP
    NATAF, F
    SCHATZMAN, M
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 515 - 530