An adaptive multigrid conjugate gradient method for the inversion of a nonlinear convection-diffusion equation

被引:5
|
作者
Liu, Tao [1 ]
机构
[1] Northeast Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Inversion; convection-diffusion equation; multigrid; porous media flow; SURFACE HEAT-FLUX; RECONSTRUCTION; IDENTIFICATION; PERMEABILITY; TOMOGRAPHY; ALGORITHMS; FIELD; FLOW;
D O I
10.1515/jiip-2016-0062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of estimating the permeability in a nonlinear convection-diffusion equation. To overcome the large calculation burden of conventional methods, we apply an adaptive multigrid conjugate gradient method to solve this inverse problem. This new method combines the multigrid multiscale idea with the conjugate gradient method, and adopts the necessary condition that the optimum solution should be the fixed point of the multigrid inversion method. Some numerical results verify that the proposed method both dramatically reduces the required computations and improves the inversion quality.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [1] An adaptive multigrid conjugate gradient method for permeability identification of nonlinear diffusion equation
    Zhao, Jingjun
    Liu, Tao
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (01): : 89 - 97
  • [2] Inverse Problem for the Nonlinear Convection-Diffusion Equation by Using the Multigrid Method and Constraint Data
    Wang, Shuai
    Ling, Shiyi
    Chao, Heyang
    Qi, Yunfei
    Zhang, Wenwen
    Ma, Qiang
    Liu, Tao
    [J]. MATHEMATICS, 2024, 12 (15)
  • [3] Retrieving the variable coefficient for a nonlinear convection-diffusion problem with spectral conjugate gradient method
    Wang, Yue-Peng
    Tao, Su-Lin
    Chen, Qun
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2015, 23 (08) : 1342 - 1365
  • [4] An adaptive multigrid strategy for convection-diffusion problems
    Vasileva, D
    Kuut, A
    Hemker, PW
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 138 - 145
  • [5] ON A NONLINEAR CONVECTION-DIFFUSION EQUATION
    PASCAL, H
    [J]. PHYSICA A, 1993, 192 (04): : 562 - 568
  • [6] Multigrid method for convection-diffusion problem with dominant convection
    Muratova, GV
    [J]. ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, 2000, : 225 - 230
  • [7] A granular computing method for nonlinear convection-diffusion equation
    Tian, Ya Lan
    Wang, Guo Yin
    Xu, Jian Jun
    Xu, Ji
    [J]. 2016 INTERNATIONAL CONFERENCE ON ELECTRONIC, INFORMATION AND COMPUTER ENGINEERING, 2016, 44
  • [8] A hybrid multigrid method for convection-diffusion problems
    Khelifi, S. Chaabane
    Mechitoua, N.
    Huelsemann, F.
    Magoules, F.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 711 - 719
  • [9] On an Adaptive Semirefinement Multigrid Algorithm for Convection-Diffusion Problems
    Vasileva, Daniela
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 572 - 579
  • [10] Inversion of convection-diffusion equation with discrete sources
    Sharma, Meenarli
    Hahn, Mirko
    Leyffer, Sven
    Ruthotto, Lars
    Waanders, Bart van Bloemen
    [J]. OPTIMIZATION AND ENGINEERING, 2021, 22 (03) : 1419 - 1457