Homogenization of a nonstationary convection-diffusion equation in a thin rod and in a layer

被引:0
|
作者
G. Allaire
I. Pankratova
A. Piatnitski
机构
[1] Ecole Polytechnique,
[2] Narvik University College,undefined
[3] Ecole Polytechnique,undefined
[4] Lebedev Physical Institute RAS,undefined
来源
SeMA Journal | 2012年 / 58卷 / 1期
关键词
Homogenization; convection-diffusion; localization; thin cylinder; layer;
D O I
10.1007/BF03322605
中图分类号
学科分类号
摘要
The paper deals with the homogenization of a non-stationary convection-diffusion equation defined in a thin rod or in a layer with Dirichlet boundary condition. Under the assumption that the convection term is large, we describe the evolution of the solution’s profile and determine the rate of its decay. The main feature of our analysis is that we make no assumption on the support of the initial data which may touch the domain’s boundary. This requires the construction of boundary layer correctors in the homogenization process which, surprisingly, play a crucial role in the definition of the leading order term at the limit. Therefore we have to restrict our attention to simple geometries like a rod or a layer for which the definition of boundary layers is easy and explicit.
引用
收藏
页码:53 / 95
页数:42
相关论文
共 50 条
  • [1] Homogenization of a Convection-Diffusion Equation in a Thin Rod Structure
    Panasenko, G.
    Pankratova, I.
    Piatnitski, A.
    [J]. INTEGRAL METHODS IN SCIENCE AND ENGINEERING, VOL 1: ANALYTIC METHODS, 2010, : 279 - +
  • [2] Homogenization of random nonstationary convection-diffusion problem
    Kleptsyna, M
    Piatnitski, A
    [J]. MULTISCALE PROBLEMS IN SCIENCE AND TECHNOLOGY: CHALLENGES TO MATHEMATICAL ANALYSIS AND PERSPECTIVES, 2002, : 251 - 270
  • [3] STOCHASTIC HOMOGENIZATION OF A CONVECTION-DIFFUSION EQUATION
    Bessaih, Hakima
    Efendiev, Yalchin
    Maris, Razvan Florian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 2718 - 2745
  • [4] HOMOGENIZATION OF CONVECTION-DIFFUSION EQUATION IN INFINITE CYLINDER
    Pankratova, Iryna
    Piatnitski, Andrey
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (01) : 111 - 126
  • [5] Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption
    Amaziane, B.
    Goncharenko, M.
    Pankratov, L.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (04): : 592 - 611
  • [6] Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection
    Marusic-Paloka, E
    Piatnitski, AL
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 391 - 409
  • [7] ON A NONLINEAR CONVECTION-DIFFUSION EQUATION
    PASCAL, H
    [J]. PHYSICA A, 1993, 192 (04): : 562 - 568
  • [8] A nonlocal convection-diffusion equation
    Ignat, Liviu I.
    Rossi, Julio D.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 399 - 437
  • [9] Lagrangian for the convection-diffusion equation
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (15) : 1885 - 1895
  • [10] DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION
    MORTON, KW
    SOBEY, IJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) : 141 - 160