Wave mixing rise inferred from Lyapunov exponents

被引:0
|
作者
Alvaro Galan
Alejandro Orfila
Gonzalo Simarro
Ismael Hernández-Carrasco
Cristobal Lopez
机构
[1] Universidad de Castilla la Mancha,E.T.S.I. Caminos, Canales y Puertos
[2] IMEDEA (CSIC-UIB),undefined
[3] Institut de Ciencies del Mar ICM (CSIC),undefined
[4] IFISC (CSIC-UIB),undefined
来源
关键词
Lyapunov exponents; Lagrangian coherent structures; Mixing;
D O I
暂无
中图分类号
学科分类号
摘要
We study the horizontal surface mixing and the transport induced by waves in a coastal environment. A comparative study is addressed by computing the Lagrangian coherent structures, via Finite Size Lyapunov Exponents, that arise in two different numerical settings: with and without wave coupled to currents. In general, we observe that mixing is increased in the area due to waves. Besides, the methodology presented here is tested by deploying a set of eight Lagrangian drifters at different locations. This dynamical approach is shown as a valuable tool to extract information about transport, mixing and residence embedded in the Eulerian time dependent velocity fields obtained from numerical models.
引用
收藏
页码:291 / 300
页数:9
相关论文
共 50 条
  • [31] RECURRENCE AND LYAPUNOV EXPONENTS
    Saussol, B.
    Troubetzkoy, S.
    Vaienti, S.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 189 - 203
  • [32] SECTIONAL LYAPUNOV EXPONENTS
    Arbieto, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) : 3171 - 3178
  • [33] Quantum Lyapunov exponents
    Falsaperla, P
    Fonte, G
    Salesi, G
    FOUNDATIONS OF PHYSICS, 2002, 32 (02) : 267 - 294
  • [34] THE CURRENT LYAPUNOV EXPONENTS
    VAVRIV, DM
    RYABOV, VB
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (02): : 48 - 50
  • [35] LYAPUNOV EXPONENTS FOR PEDESTRIANS
    EARNSHAW, JC
    HAUGHEY, D
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) : 401 - 407
  • [36] ISENTROPES AND LYAPUNOV EXPONENTS
    Buczolich, Zoltan
    Keszthelyi, Gabriella
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 1989 - 2009
  • [37] Differentiability of Lyapunov Exponents
    Thiago F. Ferraiol
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2020, 26 : 289 - 310
  • [38] Quantum Lyapunov Exponents
    P. Falsaperla
    G. Fonte
    G. Salesi
    Foundations of Physics, 2002, 32 : 267 - 294
  • [39] Asymptotic stability of structural systems based on lyapunov exponents and moment Lyapunov exponents
    Doyle, MM
    Namachchivaya, NS
    VanRoessel, HJ
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (04) : 681 - 692
  • [40] On Khintchine exponents and Lyapunov exponents of continued fractions
    Fan, Ai-Hua
    Liao, Ling-Min
    Wang, Bao-Wei
    Wu, Jun
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 73 - 109