Wave mixing rise inferred from Lyapunov exponents

被引:0
|
作者
Alvaro Galan
Alejandro Orfila
Gonzalo Simarro
Ismael Hernández-Carrasco
Cristobal Lopez
机构
[1] Universidad de Castilla la Mancha,E.T.S.I. Caminos, Canales y Puertos
[2] IMEDEA (CSIC-UIB),undefined
[3] Institut de Ciencies del Mar ICM (CSIC),undefined
[4] IFISC (CSIC-UIB),undefined
来源
关键词
Lyapunov exponents; Lagrangian coherent structures; Mixing;
D O I
暂无
中图分类号
学科分类号
摘要
We study the horizontal surface mixing and the transport induced by waves in a coastal environment. A comparative study is addressed by computing the Lagrangian coherent structures, via Finite Size Lyapunov Exponents, that arise in two different numerical settings: with and without wave coupled to currents. In general, we observe that mixing is increased in the area due to waves. Besides, the methodology presented here is tested by deploying a set of eight Lagrangian drifters at different locations. This dynamical approach is shown as a valuable tool to extract information about transport, mixing and residence embedded in the Eulerian time dependent velocity fields obtained from numerical models.
引用
收藏
页码:291 / 300
页数:9
相关论文
共 50 条
  • [21] Conditional Lyapunov exponents from time series
    Pyragas, K
    PHYSICAL REVIEW E, 1997, 56 (05): : 5183 - 5188
  • [22] Spurious Lyapunov exponents computed from data
    Tempkin, Joshua A.
    Yorke, James A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02): : 457 - 474
  • [23] LYAPUNOV EXPONENTS - A SURVEY
    ARNOLD, L
    WIHSTUTZ, V
    LECTURE NOTES IN MATHEMATICS, 1986, 1186 : 1 - 26
  • [24] STABILITY OF LYAPUNOV EXPONENTS
    LEDRAPPIER, F
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 : 469 - 484
  • [25] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528
  • [26] Differentiability of Lyapunov Exponents
    Ferraiol, Thiago F.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 289 - 310
  • [27] EXTENDED LYAPUNOV EXPONENTS
    WIESEL, WE
    PHYSICAL REVIEW A, 1992, 46 (12): : 7480 - 7491
  • [28] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672
  • [29] Flexibility of Lyapunov exponents
    Bochi, J.
    Katok, A.
    Hertz, F. Rodriguez
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (02) : 554 - 591
  • [30] INTEGRABILITY AND LYAPUNOV EXPONENTS
    Hammerlindl, Andy
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 107 - 122