Extensions of representations of integral quadratic forms

被引:0
|
作者
Wai Kiu Chan
Byeong Moon Kim
Myung-Hwan Kim
Byeong-Kweon Oh
机构
[1] Wesleyan University,Department of Mathematics and Computer Science
[2] Kangnung National University,Department of Mathematics
[3] Seoul National University,Department of Mathematical Science
[4] Sejong University,Department of Applied Mathematics
来源
The Ramanujan Journal | 2008年 / 17卷
关键词
Extension of representations; Integral quadratic forms; 11E12; 11E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let N and M be quadratic ℤ-lattices, and K be a sublattice of N. A representation σ:K→M is said to be extensible to N if there exists a representation ρ:N→M such that ρ|K=σ. We prove in this paper a local–global principle for extensibility of representation, which is a generalization of the main theorems on representations by positive definite ℤ-lattices by Hsia, Kitaoka and Kneser (J. Reine Angew. Math. 301:132–141, 1978) and Jöchner and Kitaoka (J. Number Theory 48:88–101, 1994). Applications to almost n-universal lattices and systems of quadratic equations with linear conditions are discussed.
引用
收藏
页码:145 / 153
页数:8
相关论文
共 50 条
  • [31] REPRESENTATIONS BY QUADRATIC FORMS IN A FINITE FIELD
    CARLITZ, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1954, 21 (01) : 123 - 137
  • [32] ON THE REPRESENTATIONS OF INTEGERS BY CERTAIN QUADRATIC FORMS
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) : 189 - 204
  • [33] REPRESENTATIONS BY QUADRATIC FORMS IN A FINITE FIELD
    CARLITZ, L
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 524 - 524
  • [34] Effective results on representations of quadratic forms
    Chan, WK
    Icaza, MI
    [J]. ALGEBRAIC AND ARITHMETIC THEORY OF QUADRATIC FORMS, PROCEEDINGS, 2004, 344 : 73 - 83
  • [35] CENTRAL EXTENSIONS AND RATIONAL QUADRATIC-FORMS
    FURUTA, Y
    KUBOTA, T
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1993, 130 : 177 - 182
  • [36] AN ALTERNATIVE THEOREM FOR QUADRATIC-FORMS AND EXTENSIONS
    CROUZEIX, JP
    MARTINEZLEGAZ, JE
    SEEGER, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (07): : 505 - 506
  • [37] QUADRATIC-FORMS UNDER MULTIQUADRATIC EXTENSIONS
    ELMAN, R
    LAM, TY
    WADSWORTH, AR
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1980, 83 (02): : 131 - 145
  • [38] AN ALTERNATIVE THEOREM FOR QUADRATIC-FORMS AND EXTENSIONS
    CROUZEIX, JP
    MARTINEZLEGAZ, JE
    SEEGER, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 215 : 121 - 134
  • [39] QUADRATIC-FORMS UNDER ALGEBRAIC EXTENSIONS
    ELMAN, R
    LAM, TY
    [J]. MATHEMATISCHE ANNALEN, 1976, 219 (01) : 21 - 42
  • [40] Euclidean quadratic forms and ADC forms II: integral forms
    Clark, Pete L.
    Jagy, William C.
    [J]. ACTA ARITHMETICA, 2014, 164 (03) : 265 - 308