Lp approximation capability of RBF neural networks

被引:0
|
作者
Dong Nan
Wei Wu
Jin Ling Long
Yu Mei Ma
Lin Jun Sun
机构
[1] Dalian University of Technology,Applied Mathematics Department
[2] Dalian Nationalities University,Department of Computer
关键词
neural networks; radial basis function; approximation capability; 92B20; 41A20;
D O I
暂无
中图分类号
学科分类号
摘要
Lp approximation capability of radial basis function (RBF) neural networks is investigated. If g: R+1 → R1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g(\parallel x\parallel _{R^n } ) $$\end{document} ∈ Llocp(Rn) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in Lp(K) with any accuracy for any compact set K in Rn, if and only if g(x) is not an even polynomial.
引用
收藏
页码:1533 / 1540
页数:7
相关论文
共 50 条
  • [31] Configuring RBF neural networks
    Sohn, I
    Ansari, N
    ELECTRONICS LETTERS, 1998, 34 (07) : 684 - 685
  • [32] An Enhanced Swarm Intelligence based Training Algorithm for RBF Neural Networks in Function Approximation
    Salem, Mohammed
    Zingla, Meriem Amina
    Khelfi, Mohamed Faycal
    2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 504 - 509
  • [33] On the approximation capability of neural networks using bell-shaped and sigmoidal functions
    Ciuca, I
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1845 - 1850
  • [34] Approximation capability of two hidden layer feedforward neural networks with fixed weights
    Guliyev, Namig J.
    Ismailov, Vugar E.
    NEUROCOMPUTING, 2018, 316 : 262 - 269
  • [35] A simple hierarchical approximation RBF neural network
    Doerschuk, PI
    Pawaskar, SS
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1389 - 1394
  • [36] The Application of Different RBF Neural Network in Approximation
    Chang, Jincai
    Zhao, Long
    Yang, Qianli
    INFORMATION COMPUTING AND APPLICATIONS, 2011, 7030 : 432 - 439
  • [37] THE CAPABILITY OF PERIODIC NEURAL NETWORK APPROXIMATION
    Hahm, Nahmwoo
    Hong, Bum Il
    KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (02): : 167 - 174
  • [38] Multiresolutional training of RBF networks for enhanced approximation
    Ciftcioglu, Ö
    Durmisevic, S
    Sariyildiz, S
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 732 - 737
  • [39] A RBF Neural Networks Based Feature
    Da Lianglong
    Shi Guangzhi
    Hu Junchuan
    Li Yuyang
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 2351 - 2354
  • [40] Automatical initialization of RBF neural networks
    Ros, Frederic
    Pintore, Marco
    Deman, Amaud
    Chretien, Jacques R.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 87 (01) : 26 - 32