Lp approximation capability of RBF neural networks

被引:0
|
作者
Dong Nan
Wei Wu
Jin Ling Long
Yu Mei Ma
Lin Jun Sun
机构
[1] Dalian University of Technology,Applied Mathematics Department
[2] Dalian Nationalities University,Department of Computer
关键词
neural networks; radial basis function; approximation capability; 92B20; 41A20;
D O I
暂无
中图分类号
学科分类号
摘要
Lp approximation capability of radial basis function (RBF) neural networks is investigated. If g: R+1 → R1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g(\parallel x\parallel _{R^n } ) $$\end{document} ∈ Llocp(Rn) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in Lp(K) with any accuracy for any compact set K in Rn, if and only if g(x) is not an even polynomial.
引用
收藏
页码:1533 / 1540
页数:7
相关论文
共 50 条