The Gauss–Bonnet Formula for Hyperbolic Manifolds of Finite Volume

被引:1
|
作者
Ruth Kellerhals
Thomas Zehrt
机构
[1] Georg-August-Universität Göttingen,Mathematisches Institut
来源
Geometriae Dedicata | 2001年 / 84卷
关键词
hyperbolic manifold; triangulation; generalized simplicial complex; Euler-characteristic; angle sum;
D O I
暂无
中图分类号
学科分类号
摘要
Let M denote an even-dimensional noncompact hyperbolic manifold of finite volume. We show that such manifolds are candidates for minimal volume. Generalizing H. Hopf's ideas around the Curvatura integra for compact Clifford–Klein space forms, we present an elementary combinatorial-metrical proof of the Gauss–Bonnet formula for M. In contrast to former results of G. Harder and M. Gromov, our approach doesn't make use of the arithmetical and differential geometrical machinery.
引用
收藏
页码:49 / 62
页数:13
相关论文
共 50 条
  • [31] A stereological version of the gauss-bonnet formula
    Gual-Arnau, X
    Nuño-Ballesteros, JJ
    [J]. GEOMETRIAE DEDICATA, 2001, 84 (1-3) : 253 - 260
  • [32] The Chern-Gauss-Bonnet formula for singular non-compact four-dimensional manifolds
    Buzano, Reto
    Huy The Nguyen
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (08) : 1697 - 1736
  • [33] A Gauss-Bonnet-type formula on Riemann-Finsler surfaces with nonconstant indicatrix volume
    Itoh, J.
    Sabau, S. V.
    Shimada, H.
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (01) : 165 - 192
  • [34] L2-torsion of hyperbolic manifolds of finite volume
    Lück, W
    Schick, T
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) : 518 - 567
  • [35] GEODESIC EXCURSIONS INTO CUSPS IN FINITE-VOLUME HYPERBOLIC MANIFOLDS
    MELIAN, MV
    PESTANA, D
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (01) : 77 - 93
  • [36] Manifolds with positive second gauss-bonnet curvature
    Labbi, Mohammed-Larbi
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (02) : 295 - 310
  • [37] The Gauss-Bonnet-Chern mass for graphic manifolds
    Li, Haizhong
    Wei, Yong
    Xiong, Changwei
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (04) : 251 - 266
  • [38] The Gauss-Bonnet-Chern formula for Finslerian orbifolds
    Li, Jifu
    Deng, Shaoqiang
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 45 - 62
  • [39] A Gauss–Bonnet formula for moduli spaces of Riemann surfaces
    Enrico Leuzinger
    [J]. Geometriae Dedicata, 2016, 180 : 373 - 383
  • [40] AN EXPLICIT PROOF OF THE GENERALIZED GAUSS-BONNET FORMULA
    Gillet, Henri
    Uenlue, Fatih M.
    [J]. ASTERISQUE, 2009, (328) : 137 - 160