The Gauss–Bonnet Formula for Hyperbolic Manifolds of Finite Volume

被引:1
|
作者
Ruth Kellerhals
Thomas Zehrt
机构
[1] Georg-August-Universität Göttingen,Mathematisches Institut
来源
Geometriae Dedicata | 2001年 / 84卷
关键词
hyperbolic manifold; triangulation; generalized simplicial complex; Euler-characteristic; angle sum;
D O I
暂无
中图分类号
学科分类号
摘要
Let M denote an even-dimensional noncompact hyperbolic manifold of finite volume. We show that such manifolds are candidates for minimal volume. Generalizing H. Hopf's ideas around the Curvatura integra for compact Clifford–Klein space forms, we present an elementary combinatorial-metrical proof of the Gauss–Bonnet formula for M. In contrast to former results of G. Harder and M. Gromov, our approach doesn't make use of the arithmetical and differential geometrical machinery.
引用
收藏
页码:49 / 62
页数:13
相关论文
共 50 条