The Higher-Dimensional Chern–Gauss–Bonnet Formula for Singular Conformally Flat Manifolds

被引:0
|
作者
Reto Buzano
Huy The Nguyen
机构
[1] Queen Mary University of London,School of Mathematical Sciences
来源
关键词
Chern–Gauss–Bonnet; Conical singularities; Conformal metrics; Integral estimates; -curvature; Primary 53A30; 35J30; Secondary 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous article, we generalised the classical four-dimensional Chern–Gauss–Bonnet formula to a class of manifolds with finitely many conformally flat ends and singular points, in particular obtaining the first such formula in a dimension higher than two which allows the underlying manifold to have isolated conical singularities. In the present article, we extend this result to all even dimensions n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} in the case of a class of conformally flat manifolds.
引用
收藏
页码:1043 / 1074
页数:31
相关论文
共 50 条