A new mutation operator for differential evolution algorithm

被引:0
|
作者
Mingcheng Zuo
Guangming Dai
Lei Peng
机构
[1] China University of Mining and Technology,Artificial Intelligence Research Institute
[2] China University of Geosciences (Wuhan),School of Computer Science
[3] China University of Geosciences,Hubei Key Laboratory of Intelligent Geo
[4] Key Laboratory of Geological Survey and Evaluation of Ministry of Education,Information Processing
来源
Soft Computing | 2021年 / 25卷
关键词
Differential evolution; Mutation operator; Scaling factor;
D O I
暂无
中图分类号
学科分类号
摘要
The widely employed mutation operator DE/current-to-pbest/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-pbest/1$$\end{document} in the differential evolution algorithm (DE) is further developed to a new version DE/current-to-pbest/1-X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-pbest/1-X$$\end{document} in this paper. To test its performance, it has been embedded in the novel successful history-based adaptive DE (L-SHADE) and compared with other recently proposed mutation operators. In DE/current-to-pbest/1-X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-pbest/1-X$$\end{document}, the updated parameter memories in each generation are not adopted when the initial value can still maintain an acceptable successful rate of finding better offspring. Also, the generated worse offsprings with acceptable fitness values are partially archived to generate differential vectors. The experimental results show that DE/current-to-pbest/1-X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-pbest/1-X$$\end{document} has a comparable performance than DE/current-to-pbest/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-pbest/1$$\end{document}, DE/current-to-ord_pbest/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-ord\_pbest/1$$\end{document} and DE/current-to-ord_best/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DE/current-to-ord\_best/1$$\end{document}.
引用
收藏
页码:13595 / 13615
页数:20
相关论文
共 50 条
  • [41] A clustering differential evolution algorithm with neighborhood-based dual mutation operator for multimodal multiobjective optimization
    Zhou, Ting
    Hu, Zhongbo
    Su, Qinghua
    Xiong, Wentao
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 216
  • [42] Enhanced Differential Evolution by Dynamic Selection Framework of Mutation Operator
    Xia Dahai
    Lin Song
    Gu Wei
    Xiong Caiquan
    [J]. 2018 8TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2018, : 243 - 246
  • [43] Differential Evolution Using a Neighborhood-Based Mutation Operator
    Das, Swagatam
    Abraham, Ajith
    Chakraborty, Uday K.
    Konar, Amit
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) : 526 - 553
  • [44] A new differential mutation base generator for differential evolution
    Chuan Lin
    Anyong Qing
    Quanyuan Feng
    [J]. Journal of Global Optimization, 2011, 49 : 69 - 90
  • [45] A new differential mutation base generator for differential evolution
    Lin, Chuan
    Qing, Anyong
    Feng, Quanyuan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (01) : 69 - 90
  • [46] A new mutation operator for evolution strategies for constrained problems
    Kramer, O
    Ting, CK
    Büning, HK
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2600 - 2606
  • [47] An Improved Differential Evolution Algorithm with Novel Mutation Strategy
    Shi, Yujiao
    Gao, Hao
    Wu, Dongmei
    [J]. 2014 IEEE SYMPOSIUM ON DIFFERENTIAL EVOLUTION (SDE), 2014, : 97 - 104
  • [48] An Improved Differential Evolution Algorithm with Novel Mutation Strategy
    Shen, Xin
    Zou, Dexuan
    Zhang, Xin
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS AND INFORMATION TECHNOLOGY (ICMIT 2017), 2017, : 94 - 103
  • [49] Differential evolution algorithm with ensemble of parameters and mutation strategies
    Mallipeddi, R.
    Suganthan, P. N.
    Pan, Q. K.
    Tasgetiren, M. F.
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (02) : 1679 - 1696
  • [50] A Mutation and Crossover Adaptation Mechanism for Differential Evolution Algorithm
    Aalto, Johanna
    Lampinen, Jouni
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 451 - 458