Differential evolution algorithm with ensemble of parameters and mutation strategies

被引:1062
|
作者
Mallipeddi, R. [1 ]
Suganthan, P. N. [1 ]
Pan, Q. K. [2 ]
Tasgetiren, M. F. [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Liaocheng Univ, Coll Comp Sci, Liaocheng 252059, Peoples R China
[3] Yasar Univ, Dept Ind Engn, Izmir, Turkey
关键词
Differential evolution; Global optimization; Parameter adaptation; Ensemble; Mutation strategy adaptation; OPTIMIZATION;
D O I
10.1016/j.asoc.2010.04.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) has attracted much attention recently as an effective approach for solving numerical optimization problems. However, the performance of DE is sensitive to the choice of the mutation strategy and associated control parameters. Thus, to obtain optimal performance, time-consuming parameter tuning is necessary. Different mutation strategies with different parameter settings can be appropriate during different stages of the evolution. In this paper, we propose to employ an ensemble of mutation strategies and control parameters with the DE (EPSDE). In EPSDE, a pool of distinct mutation strategies along with a pool of values for each control parameter coexists throughout the evolution process and competes to produce offspring. The performance of EPSDE is evaluated on a set of bound-constrained problems and is compared with conventional DE and several state-of-the-art parameter adaptive DE variants. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1679 / 1696
页数:18
相关论文
共 50 条
  • [1] Differential Evolution Algorithm with Ensemble of Parameters and Mutation and Crossover Strategies
    Mallipeddi, Rammohan
    Suganthan, Ponnuthurai Nagaratnam
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 71 - +
  • [2] Hand Contour Classification Using Differential Evolution Algorithm with Ensemble of Parameters and Mutation and Crossover
    Moravec, J.
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2020, 49 (01): : 55 - 79
  • [3] Self-Adaptive Differential Evolution Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies
    Fan, Qinqin
    Yan, Xuefeng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 219 - 232
  • [4] Empirical investigations on evolution strategies to self-adapt the mutation and crossover parameters of differential evolution algorithm
    Dhanalakshmy, Dhanya M.
    Jeyakumar, G.
    Shunmuga Velayutham, C.
    [J]. International Journal of Intelligent Systems Technologies and Applications, 2021, 20 (02): : 103 - 125
  • [5] Differential evolution with multi-population based ensemble of mutation strategies
    Wu, Guohua
    Mallipeddi, Rammohan
    Suganthan, P. N.
    Wang, Rui
    Chen, Huangke
    [J]. INFORMATION SCIENCES, 2016, 329 : 329 - 345
  • [6] Differential evolution algorithm with elite archive and mutation strategies collaboration
    Li, Yuzhen
    Wang, Shihao
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (06) : 4005 - 4050
  • [7] An improved differential evolution algorithm with dual mutation strategies collaboration
    Li, Yuzhen
    Wang, Shihao
    Yang, Bo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 153
  • [8] An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies
    Xiang, Wan-li
    Meng, Xue-lei
    An, Mei-qing
    Li, Yin-zhen
    Gao, Ming-xia
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [9] A quantum inspired differential evolution algorithm with multiple mutation strategies
    Liu, Jie
    Qin, XingSheng
    Jiang, F.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 927 - 934
  • [10] Differential evolution algorithm with elite archive and mutation strategies collaboration
    Yuzhen Li
    Shihao Wang
    [J]. Artificial Intelligence Review, 2020, 53 : 4005 - 4050