On Modules Satisfying S-Noetherian Spectrum Condition

被引:0
|
作者
Mehmet Özen
Osama A. Naji
Ünsal Tekir
Suat Koç
机构
[1] Sakarya University,Department of Mathematics
[2] Marmara University,Department of Mathematics
关键词
Noetherian modules; -Noetherian modules; Noetherian spectrum; -Noetherian spectrum condition; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring having nonzero identity and M be a unital R-module. Assume that S⊆R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq R$$\end{document} is a multiplicatively closed subset of R. Then, M satisfies S-Noetherian spectrum condition if for each submodule N of M, there exist s∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in S$$\end{document} and a finitely generated submodule F⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subseteq N$$\end{document} such that sN⊆radM(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sN\subseteq \text {rad}_{M}(F)$$\end{document}, where radM(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {rad}_{M}(F)$$\end{document} is the prime radical of F in the sense (McCasland and Moore in Commun Algebra 19(5):1327–1341, 1991). Besides giving many properties and characterizations of S-Noetherian spectrum condition, we prove an analogous result to Cohen’s theorem for modules satisfying S-Noetherian spectrum condition. Moreover, we characterize modules having Noetherian spectrum in terms of modules satisfying the S-Noetherian spectrum condition.
引用
收藏
页码:649 / 662
页数:13
相关论文
共 50 条
  • [1] On Modules Satisfying S-Noetherian Spectrum Condition
    Ozen, Mehmet
    Naji, Osama A.
    Tekir, Unsal
    Koc, Suat
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (03) : 649 - 662
  • [2] S-Noetherian spectrum condition
    Ahmed, Hamed
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (08) : 3314 - 3321
  • [3] MODULES SATISFYING THE S-NOETHERIAN PROPERTY AND S-ACCR
    Ahmed, Hamed
    Sana, Hizem
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (05) : 1941 - 1951
  • [4] On right S-Noetherian rings and S-Noetherian modules
    Bilgin, Zehra
    Reyes, Manuel L.
    Tekir, Unsal
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 863 - 869
  • [5] GRADED S-NOETHERIAN MODULES
    Ansari, Ajim Uddin
    Sharma, B. K.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 33 : 87 - 108
  • [6] Weakly S-Noetherian modules
    Khani-Nasab, Omid
    Hamed, Ahmed
    Malek, Achraf
    [J]. FILOMAT, 2023, 37 (14) : 4649 - 4657
  • [7] Rings with S-Noetherian spectrum
    Hamed, Ahmed
    Kim, Hwankoo
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (10)
  • [8] AN EXTENSION OF S-NOETHERIAN RINGS AND MODULES
    Jara, P.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 1 - 20
  • [9] S-Noetherian rings
    Anderson, DD
    Dumitrescu, T
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) : 4407 - 4416
  • [10] Existence and uniqueness of S-primary decomposition in S-Noetherian modules
    Singh, Tushar
    Ansari, Ajim Uddin
    Kumar, Shiv Datt
    [J]. COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4515 - 4524