On Modules Satisfying S-Noetherian Spectrum Condition

被引:0
|
作者
Mehmet Özen
Osama A. Naji
Ünsal Tekir
Suat Koç
机构
[1] Sakarya University,Department of Mathematics
[2] Marmara University,Department of Mathematics
关键词
Noetherian modules; -Noetherian modules; Noetherian spectrum; -Noetherian spectrum condition; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring having nonzero identity and M be a unital R-module. Assume that S⊆R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq R$$\end{document} is a multiplicatively closed subset of R. Then, M satisfies S-Noetherian spectrum condition if for each submodule N of M, there exist s∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in S$$\end{document} and a finitely generated submodule F⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subseteq N$$\end{document} such that sN⊆radM(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$sN\subseteq \text {rad}_{M}(F)$$\end{document}, where radM(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {rad}_{M}(F)$$\end{document} is the prime radical of F in the sense (McCasland and Moore in Commun Algebra 19(5):1327–1341, 1991). Besides giving many properties and characterizations of S-Noetherian spectrum condition, we prove an analogous result to Cohen’s theorem for modules satisfying S-Noetherian spectrum condition. Moreover, we characterize modules having Noetherian spectrum in terms of modules satisfying the S-Noetherian spectrum condition.
引用
收藏
页码:649 / 662
页数:13
相关论文
共 50 条
  • [21] S-Noetherian Rings of the Forms A[X] and A[[X]]
    Ahmed, Hamed
    Sana, Hizem
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) : 3848 - 3856
  • [22] S-NOETHERIAN PROPERTIES OF COMPOSITE RING EXTENSIONS
    Lim, Jung Wook
    Oh, Dong Yeol
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2820 - 2829
  • [23] Amalgamated algebra along an ideal defined by S-noetherian spectrum-like-conditions
    Issoual, Mohammed
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 65 (3): : 645 - 655
  • [24] NOETHERIAN SPECTRUM ON RINGS AND MODULES
    Rush, David E.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 707 - 715
  • [25] The S-Noetherian ring A [X,Y;λ] and Krull dimension
    Dabbabi, Abdelamir
    Benhissi, Ali
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 757 - 771
  • [26] The S-Noetherian ring A[X, Y; ?] and Krull dimension
    Dabbabi, Abdelamir
    Benhissi, Ali
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023,
  • [27] S-Noetherian properties on amalgamated algebras along an ideal
    Lim, Jung Wook
    Oh, Dong Yeol
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (06) : 1075 - 1080
  • [28] When Are Graded Rings Graded S-Noetherian Rings
    Kim, Dong Kyu
    Lim, Jung Wook
    [J]. MATHEMATICS, 2020, 8 (09)
  • [29] Noetherian spectrum condition and the ring [X]
    Guesmi, Samir
    Hamed, Ahmed
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [30] Graded modules with Noetherian graded second spectrum
    Salam, Saif
    Al-Zoubi, Khaldoun
    [J]. AIMS MATHEMATICS, 2023, 8 (03): : 6626 - 6641