S-Noetherian spectrum condition

被引:14
|
作者
Ahmed, Hamed [1 ]
机构
[1] Fac Sci, Dept Math, Monastir 5019, Tunisia
关键词
Polynomial rings; radically S-finite ideals; ring has S-Noetherian spectrum; 13E99; 13B25; 13C; RINGS;
D O I
10.1080/00927872.2017.1412455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative ring R with identity satisfies the S-Noetherian spectrum condition, where SR is a given multiplicative set, if for each ideal I of R, for some sS and some finitely generated ideal J. Using this concept, we give an S-version of several different known results. For instance, the ring R satisfies the S-Noetherian spectrum property if and only if the polynomial ring R[X] satisfies the S-Noetherian spectrum property.
引用
收藏
页码:3314 / 3321
页数:8
相关论文
共 50 条
  • [1] On Modules Satisfying S-Noetherian Spectrum Condition
    Mehmet Özen
    Osama A. Naji
    Ünsal Tekir
    Suat Koç
    [J]. Communications in Mathematics and Statistics, 2023, 11 : 649 - 662
  • [2] On Modules Satisfying S-Noetherian Spectrum Condition
    Ozen, Mehmet
    Naji, Osama A.
    Tekir, Unsal
    Koc, Suat
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (03) : 649 - 662
  • [3] Rings with S-Noetherian spectrum
    Hamed, Ahmed
    Kim, Hwankoo
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (10)
  • [4] On right S-Noetherian rings and S-Noetherian modules
    Bilgin, Zehra
    Reyes, Manuel L.
    Tekir, Unsal
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 863 - 869
  • [5] S-Noetherian rings
    Anderson, DD
    Dumitrescu, T
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) : 4407 - 4416
  • [6] ON S-NOETHERIAN RINGS
    Liu Zhongkui
    [J]. ARCHIVUM MATHEMATICUM, 2007, 43 (01): : 55 - 60
  • [7] GRADED S-NOETHERIAN MODULES
    Ansari, Ajim Uddin
    Sharma, B. K.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 33 : 87 - 108
  • [8] Weakly S-Noetherian modules
    Khani-Nasab, Omid
    Hamed, Ahmed
    Malek, Achraf
    [J]. FILOMAT, 2023, 37 (14) : 4649 - 4657
  • [9] Uniformly S-Noetherian rings
    Chen, Mingzhao
    Kim, Hwankoo
    Qi, Wei
    Wang, Fanggui
    Zhao, Wei
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (05) : 1019 - 1038
  • [10] GENERALIZATION OF THE S-NOETHERIAN CONCEPT
    Dabbabi, Abdelamir
    Benhissi, Ali
    [J]. ARCHIVUM MATHEMATICUM, 2023, 59 (04): : 307 - 314