S-Noetherian spectrum condition

被引:14
|
作者
Ahmed, Hamed [1 ]
机构
[1] Fac Sci, Dept Math, Monastir 5019, Tunisia
关键词
Polynomial rings; radically S-finite ideals; ring has S-Noetherian spectrum; 13E99; 13B25; 13C; RINGS;
D O I
10.1080/00927872.2017.1412455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative ring R with identity satisfies the S-Noetherian spectrum condition, where SR is a given multiplicative set, if for each ideal I of R, for some sS and some finitely generated ideal J. Using this concept, we give an S-version of several different known results. For instance, the ring R satisfies the S-Noetherian spectrum property if and only if the polynomial ring R[X] satisfies the S-Noetherian spectrum property.
引用
收藏
页码:3314 / 3321
页数:8
相关论文
共 50 条
  • [11] A Note on S-Noetherian Domains
    Lim, Jung Wook
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (03): : 507 - 514
  • [12] S-Noetherian Rings and Their Extensions
    Baeck, Jongwook
    Lee, Gangyong
    Lim, Jung Wook
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (06): : 1231 - 1250
  • [13] S-NOETHERIAN IN BI-AMALGAMATIONS
    Kim, Hwankoo
    Mahdou, Najib
    Zahir, Youssef
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (04) : 1021 - 1029
  • [14] A Note on Weakly S-Noetherian Rings
    Kim, Dong Kyu
    Lim, Jung Wook
    [J]. SYMMETRY-BASEL, 2020, 12 (03):
  • [15] AN EXTENSION OF S-NOETHERIAN RINGS AND MODULES
    Jara, P.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 1 - 20
  • [16] S-Noetherian Rings of the Forms A[X] and A[[X]]
    Ahmed, Hamed
    Sana, Hizem
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) : 3848 - 3856
  • [17] S-NOETHERIAN PROPERTIES OF COMPOSITE RING EXTENSIONS
    Lim, Jung Wook
    Oh, Dong Yeol
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2820 - 2829
  • [18] Amalgamated algebra along an ideal defined by S-noetherian spectrum-like-conditions
    Issoual, Mohammed
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 65 (3): : 645 - 655
  • [19] MODULES SATISFYING THE S-NOETHERIAN PROPERTY AND S-ACCR
    Ahmed, Hamed
    Sana, Hizem
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (05) : 1941 - 1951
  • [20] The S-Noetherian ring A [X,Y;λ] and Krull dimension
    Dabbabi, Abdelamir
    Benhissi, Ali
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 757 - 771