Correlated optical and isotopic nanoscopy

被引:0
|
作者
Sinem K. Saka
Angela Vogts
Katharina Kröhnert
François Hillion
Silvio O Rizzoli
Johannes T. Wessels
机构
[1] University of Göttingen Medical Centre,Department of Neuro
[2] and Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), and Sensory Physiology
[3] International Max Planck Research School,undefined
[4] Leibniz-Institute for Baltic Sea Research,undefined
[5] Cameca,undefined
[6] 29 Quai des Grésillons,undefined
[7] University of Göttingen Medical Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.
引用
收藏
相关论文
共 50 条
  • [41] Photostable optical nanoscopy (PHOTON) for cancer research
    Xu, X. Nancy
    Songkiatisak, Preeyaporn
    Cherukuri, Pavan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [42] Suppressing background noise in STED optical nanoscopy
    Jeong, Sejoo
    Kim, Jaeyong
    Lee, Jong-Chan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 78 (05) : 401 - 407
  • [43] Machine Learning for Optical Scanning Probe Nanoscopy
    Chen, Xinzhong
    Xu, Suheng
    Shabani, Sara
    Zhao, Yueqi
    Fu, Matthew
    Millis, Andrew J.
    Fogler, Michael M.
    Pasupathy, Abhay N.
    Liu, Mengkun
    Basov, D. N.
    ADVANCED MATERIALS, 2023, 35 (34)
  • [44] Optical nanoscopy: FPALM breaks the diffraction limits
    Gould, Travis J.
    Gunewardene, Mudalige
    Gudheti, Manasa V.
    Gosse, Julie A.
    Hess, Samuel T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [45] Direct optical nanoscopy with axially localized detection
    Bourg, N.
    Mayet, C.
    Dupuis, G.
    Barroca, T.
    Bon, P.
    Lecart, S.
    Fort, E.
    Leveque-Fort, S.
    NATURE PHOTONICS, 2015, 9 (09) : 587 - +
  • [46] Optical nanoscopy of transient states in condensed matter
    Kuschewski, F.
    Kehr, S. C.
    Green, B.
    Bauer, Ch.
    Gensch, M.
    Eng, L. M.
    SCIENTIFIC REPORTS, 2015, 5
  • [47] Direct optical nanoscopy with axially localized detection
    Bourg N.
    Mayet C.
    Dupuis G.
    Barroca T.
    Bon P.
    Lécart S.
    Fort E.
    Lévêque-Fort S.
    Nature Photonics, 2015, 9 (9) : 587 - 593
  • [48] Suppressing background noise in STED optical nanoscopy
    Sejoo Jeong
    Jaeyong Kim
    Jong-Chan Lee
    Journal of the Korean Physical Society, 2021, 78 : 401 - 407
  • [49] Optical Imaging Innovations for Atherosclerosis Research Multiphoton Microscopy and Optical Nanoscopy
    Megens, Remco T. A.
    Bianchini, Mariaelvy
    Schmitt, Martin M. N.
    Weber, Christian
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2015, 35 (06) : 1339 - 1346
  • [50] Advanced GFP-like proteins for optical nanoscopy
    Nienhaus, Gerd Ulrich
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238