Correlated optical and isotopic nanoscopy

被引:0
|
作者
Sinem K. Saka
Angela Vogts
Katharina Kröhnert
François Hillion
Silvio O Rizzoli
Johannes T. Wessels
机构
[1] University of Göttingen Medical Centre,Department of Neuro
[2] and Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), and Sensory Physiology
[3] International Max Planck Research School,undefined
[4] Leibniz-Institute for Baltic Sea Research,undefined
[5] Cameca,undefined
[6] 29 Quai des Grésillons,undefined
[7] University of Göttingen Medical Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.
引用
收藏
相关论文
共 50 条
  • [21] Measuring image resolution in optical nanoscopy
    Nieuwenhuizen R.P.J.
    Lidke K.A.
    Bates M.
    Puig D.L.
    Grünwald D.
    Stallinga S.
    Rieger B.
    Nature Methods, 2013, 10 (6) : 557 - 562
  • [22] Converging and Correlative Technologies for Optical Nanoscopy
    Diaspro, Alberto
    Bianchini, Paolo
    Canale, Claudio
    Zanacchi, Francesca Cella
    Duocastella, Marta
    Lanzano, Luca
    Mazumder, Nirmal
    Sheppard, Colin
    Vicidomini, Giuseppe
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 4A - 4A
  • [23] Far-field optical nanoscopy
    Hell, Stefan W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [24] Fluorescent Probes for STED Optical Nanoscopy
    Jeong, Sejoo
    Widengren, Jerker
    Lee, Jong-Chan
    NANOMATERIALS, 2022, 12 (01)
  • [25] Far-Field Optical Nanoscopy
    Hell, Stefan W.
    SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY, 2010, 96 : 365 - 398
  • [26] RESOLFT Optical Nanoscopy for the Life Sciences
    Testa, Ilaria
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 7A - 7A
  • [27] IMAGING Optical nanoscopy turns coherent
    Klar, Thomas A.
    NATURE PHOTONICS, 2018, 12 (02) : 63 - 65
  • [28] Measuring image resolution in optical nanoscopy
    Nieuwenhuizen, Robert P. J.
    Lidke, Keith A.
    Bates, Mark
    Puig, Daniela Leyton
    Gruenwald, David
    Stallinga, Sjoerd
    Rieger, Bernd
    NATURE METHODS, 2013, 10 (06) : 557 - +
  • [29] Depth resolved nonlinear optical nanoscopy
    Mochán, WL
    López-Bastidas, C
    Maytorena, JA
    Mendoza, BS
    Brudny, VL
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2003, 240 (03): : 527 - 536
  • [30] Depth resolved nonlinear optical nanoscopy
    Mochán, WL
    López-Bastidas, C
    Maytorena, JA
    Mendoza, BS
    Brudny, VL
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 0, NO 8, 2003, 0 (08): : 527 - 536