Stability analysis of lower dimensional gravastars in noncommutative geometry

被引:0
|
作者
Ayan Banerjee
Sudan Hansraj
机构
[1] Jadavpur University,Department of Mathematics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
关键词
Black Hole; Event Horizon; Black Hole Solution; Noncommutative Geometry; Gravitational Wave Signature;
D O I
暂无
中图分类号
学科分类号
摘要
The Bañados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\alpha }$$\end{document} and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ<0.214\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi < 0. 214$$\end{document} under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics.
引用
收藏
相关论文
共 50 条
  • [41] GRAVITY IN NONCOMMUTATIVE GEOMETRY
    CHAMSEDDINE, AH
    FELDER, G
    FROHLICH, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) : 205 - 217
  • [42] Singularities and noncommutative geometry
    Brasselet, JP
    NEW DEVELOPMENTS IN SINGULARITY THEORY, 2001, 21 : 135 - 155
  • [43] NONCOMMUTATIVE GEOMETRY AND REALITY
    CONNES, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6194 - 6231
  • [44] GEOMETRY GOES NONCOMMUTATIVE
    JONES, JDS
    NATURE, 1987, 329 (6136) : 201 - 202
  • [45] Noncommutative geometry and cosmology
    Barbosa, GD
    Pinto-Neto, N
    PHYSICAL REVIEW D, 2004, 70 (10): : 103512 - 1
  • [46] The geometry of noncommutative symmetries
    Paschke, M
    Sitarz, A
    ACTA PHYSICA POLONICA B, 2000, 31 (09): : 1897 - 1911
  • [47] Noncommutative double geometry
    Kodzoman, Toni
    Lescano, Eric
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [48] Noncommutative geometry as a functor
    Nikolaev, Igor V.
    OPERATOR STRUCTURES AND DYNAMICAL SYSTEMS, 2009, 503 : 151 - 157
  • [49] NONCOMMUTATIVE DIFFERENTIAL GEOMETRY
    CONNES, A
    PUBLICATIONS MATHEMATIQUES, 1985, (62): : 257 - 360
  • [50] Stratified Noncommutative Geometry
    Ayala, David
    Mazel-Gee, Aaron
    Rozenblyum, Nick
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 297 (1485) : 1485