Stability analysis of lower dimensional gravastars in noncommutative geometry

被引:0
|
作者
Ayan Banerjee
Sudan Hansraj
机构
[1] Jadavpur University,Department of Mathematics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
关键词
Black Hole; Event Horizon; Black Hole Solution; Noncommutative Geometry; Gravitational Wave Signature;
D O I
暂无
中图分类号
学科分类号
摘要
The Bañados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\alpha }$$\end{document} and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ<0.214\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi < 0. 214$$\end{document} under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics.
引用
收藏
相关论文
共 50 条
  • [11] Real dimensional spaces in noncommutative geometry
    Jordans, Bas P. A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (10) : 2820 - 2850
  • [12] Study of gravastars in Finslerian geometry
    Banerjee, Sumita
    Ghosh, Shounak
    Paul, Nupur
    Rahaman, Farook
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [13] Study of gravastars in Finslerian geometry
    Sumita Banerjee
    Shounak Ghosh
    Nupur Paul
    Farook Rahaman
    The European Physical Journal Plus, 135
  • [14] ANALYSIS ON GRAPHS AND NONCOMMUTATIVE GEOMETRY
    DAVIES, EB
    JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) : 398 - 430
  • [15] Stability of d-dimensional gravastars with variable equation of state
    Sharif, M.
    Javed, Faisal
    CHINESE JOURNAL OF PHYSICS, 2022, 77 : 804 - 815
  • [16] The Higher Dimensional Gravastars
    Rahaman, F.
    Chakraborty, S.
    Ray, Saibal
    Usmani, A. A.
    Islam, S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 50 - 61
  • [17] The Higher Dimensional Gravastars
    F. Rahaman
    S. Chakraborty
    Saibal Ray
    A. A. Usmani
    S. Islam
    International Journal of Theoretical Physics, 2015, 54 : 50 - 61
  • [18] On the Stability of Thin-Shell Wormholes in Noncommutative Geometry
    Kuhfittig, Peter K. F.
    ADVANCES IN HIGH ENERGY PHYSICS, 2012, 2012
  • [19] Emergence of time from dimensional reduction in noncommutative geometry
    Chu, CS
    Lechtenfeld, O
    MODERN PHYSICS LETTERS A, 2006, 21 (08) : 639 - 647
  • [20] Noncommutative geometry for three-dimensional topological insulators
    Neupert, Titus
    Santos, Luiz
    Ryu, Shinsei
    Chamon, Claudio
    Mudry, Christopher
    PHYSICAL REVIEW B, 2012, 86 (03)