Stability analysis of lower dimensional gravastars in noncommutative geometry

被引:0
|
作者
Ayan Banerjee
Sudan Hansraj
机构
[1] Jadavpur University,Department of Mathematics
[2] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
关键词
Black Hole; Event Horizon; Black Hole Solution; Noncommutative Geometry; Gravitational Wave Signature;
D O I
暂无
中图分类号
学科分类号
摘要
The Bañados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\alpha }$$\end{document} and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ<0.214\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi < 0. 214$$\end{document} under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics.
引用
收藏
相关论文
共 50 条
  • [1] Stability analysis of lower dimensional gravastars in noncommutative geometry
    Banerjee, Ayan
    Hansraj, Sudan
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (11):
  • [2] Linearized stability analysis of gravastars in noncommutative geometry
    Lobo F.S.N.
    Garattini R.
    Journal of High Energy Physics, 2013 (12)
  • [3] Noncommutative Geometry and Lower Dimensional Volumes in Riemannian Geometry
    Raphaël Ponge
    Letters in Mathematical Physics, 2008, 83 : 19 - 32
  • [4] Noncommutative geometry and lower dimensional volumes in Riemannian geometry
    Ponge, Raphael
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 83 (01) : 19 - 32
  • [5] Charged thin-shell gravastars in noncommutative geometry
    Ali Övgün
    Ayan Banerjee
    Kimet Jusufi
    The European Physical Journal C, 2017, 77
  • [6] Charged thin-shell gravastars in noncommutative geometry
    Ovgun, Ali
    Banerjee, Ayan
    Jusufi, Kimet
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (08):
  • [7] Seeking connections between wormholes, gravastars, and black holes via noncommutative geometry
    Kuhfittig, Peter K. F.
    Gladney, Vance D.
    MODERN PHYSICS LETTERS A, 2020, 35 (09)
  • [8] Noncommutative Geometry and Analysis
    Sergeev A.G.
    Journal of Mathematical Sciences, 2019, 236 (6) : 641 - 662
  • [9] Gravastars in the Lyra geometry
    Shafeek, A. T.
    Bakry, M. A.
    Moatimid, G. M.
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (04):
  • [10] Linear stability of noncommutative spectral geometry
    Sakellariadou, M.
    Watcharangkool, A.
    PHYSICAL REVIEW D, 2016, 93 (06)