Consistent realization of Celestial and Terrestrial Reference Frames

被引:0
|
作者
Younghee Kwak
Mathis Bloßfeld
Ralf Schmid
Detlef Angermann
Michael Gerstl
Manuela Seitz
机构
[1] Deutsches Geodätisches Forschungsinstitut at the Technische Universität München (DGFI-TUM),
来源
Journal of Geodesy | 2018年 / 92卷
关键词
Celestial Reference Frame; Terrestrial Reference Frame; ICRF; ITRF; Inter-technique combination; VLBI; SLR; GNSS; EOP;
D O I
暂无
中图分类号
学科分类号
摘要
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of ΔUT1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \hbox {UT1}$$\end{document} results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as. Moreover, the CRF is influenced by up to 50μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50~\upmu $$\end{document}as if the station coordinates and EOP are dominated by the satellite techniques.
引用
收藏
页码:1047 / 1061
页数:14
相关论文
共 50 条
  • [41] Terrestrial reference frames and their internal accuracy at coordinate system level
    Christopher Kotsakis
    Miltiadis Chatzinikos
    Journal of Geodesy, 2023, 97
  • [42] The third realization of the International Celestial Reference Frame by very long baseline interferometry
    Charlot, P.
    Jacobs, C.S.
    Gordon, D.
    Lambert, S.
    De Witt, A.
    Böhm, J.
    Fey, A.L.
    Heinkelmann, R.
    Skurikhina, E.
    Titov, O.
    Arias, E.F.
    Bolotin, S.
    Bourda, G.
    Ma, C.
    Malkin, Z.
    Nothnagel, A.
    Mayer, D.
    Macmillan, D.S.
    Nilsson, T.
    Gaume, R.
    1600, EDP Sciences (644):
  • [43] The Assessment of the Temporal Evolution of Space Geodetic Terrestrial Reference Frames
    Ampatzidis, Dimitrios
    Koenig, Rolf
    Glaser, Susanne
    Schuh, Harald
    INTERNATIONAL SYMPOSIUM ON EARTH AND ENVIRONMENTAL SCIENCES FOR FUTURE GENERATIONS, 2018, 147 : 11 - 15
  • [44] Tracking Internal Frames of Reference for Consistent Molecular Distribution Functions
    Skanberg, Robin
    Falk, Martin
    Linares, Mathieu
    Ynnerman, Anders
    Hotz, Ingrid
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (09) : 3126 - 3137
  • [45] Realization of the Terrestrial Reference System by a reprocessed global GPS network
    Ruelke, A.
    Dietrich, R.
    Fritsche, M.
    Rothacher, M.
    Steigenberger, P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2008, 113 (B8)
  • [46] Realization of a consistent set of vertical reference surfaces in coastal areas
    D. C. Slobbe
    R. Klees
    B. C. Gunter
    Journal of Geodesy, 2014, 88 : 601 - 615
  • [47] Realization of a consistent set of vertical reference surfaces in coastal areas
    Slobbe, D. C.
    Klees, R.
    Gunter, B. C.
    JOURNAL OF GEODESY, 2014, 88 (06) : 601 - 615
  • [48] Towards a robust estimation of orientation parameters between ICRF and Gaia celestial reference frames
    Malkin, Zinovy
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 506 (04) : 5540 - 5547
  • [49] ON THE ASSESSMENT OF THE TEMPORAL EVOLUTION OF GLOBAL TERRESTRIAL REFERENCE FRAMES: THE VEDA APPROACH
    Ampatzidis, Dimitrios
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2019, 16 (01): : 85 - 97
  • [50] Metcors — The terrestrial and celestial connection
    B. S. Shylaja
    Resonance, 1999, 4 (11) : 71 - 79