Consistent realization of Celestial and Terrestrial Reference Frames

被引:0
|
作者
Younghee Kwak
Mathis Bloßfeld
Ralf Schmid
Detlef Angermann
Michael Gerstl
Manuela Seitz
机构
[1] Deutsches Geodätisches Forschungsinstitut at the Technische Universität München (DGFI-TUM),
来源
Journal of Geodesy | 2018年 / 92卷
关键词
Celestial Reference Frame; Terrestrial Reference Frame; ICRF; ITRF; Inter-technique combination; VLBI; SLR; GNSS; EOP;
D O I
暂无
中图分类号
学科分类号
摘要
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of ΔUT1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \hbox {UT1}$$\end{document} results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as. Moreover, the CRF is influenced by up to 50μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50~\upmu $$\end{document}as if the station coordinates and EOP are dominated by the satellite techniques.
引用
收藏
页码:1047 / 1061
页数:14
相关论文
共 50 条
  • [31] TRANSFORMATIONS BETWEEN THE SLOVENIAN AND INTERNATIONAL TERRESTRIAL REFERENCE FRAMES
    Berk, Sandi
    Medved, Klemen
    GEODETSKI VESTNIK, 2021, 65 (03) : 361 - 384
  • [32] Towards an Improved Assessment of the Quality of Terrestrial Reference Frames
    Kutterer, H.
    Kruegel, M.
    Tesmer, V.
    GEODETIC REFERENCE FRAMES, 2009, 134 : 67 - 72
  • [33] New trends for the realization of the International Terrestrial Reference System
    Altamimi, Z
    Boucher, C
    Sillard, P
    NEW TRENDS IN SPACE GEODESY, 2002, 30 (02): : 175 - 184
  • [34] Combination Strategy for the Geocentric Realization of Regional Epoch Reference Frames
    Kehm, A.
    Sanchez, L.
    Blossfeld, M.
    Seitz, M.
    Drewes, H.
    Angermann, D.
    Seitz, F.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (10)
  • [35] The third realization of the International Celestial Reference Frame by very long baseline interferometry
    Charlot, P.
    Jacobs, C. S.
    Gordon, D.
    Lambert, S.
    de Witt, A.
    Boehm, J.
    Fey, A. L.
    Heinkelmann, R.
    Skurikhina, E.
    Titov, O.
    Arias, E. F.
    Bolotin, S.
    Bourda, G.
    Ma, C.
    Malkin, Z.
    Nothnagel, A.
    Mayer, D.
    MacMillan, D. S.
    Nilsson, T.
    Gaume, R.
    ASTRONOMY & ASTROPHYSICS, 2020, 644
  • [36] Terrestrial and Celestial Globes
    不详
    RIJKSMUSEUM BULLETIN, 2015, 63 (02): : 164 - 164
  • [37] Terrestrial and Celestial Spheres
    不详
    SCOTTISH GEOGRAPHICAL MAGAZINE, 1902, 18 (02): : 109 - 110
  • [38] Realization of a multifrequency celestial reference frame through a combination of normal equation systems
    Karbon, M.
    Nothnagel, A.
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [39] THE SECOND REALIZATION OF THE INTERNATIONAL CELESTIAL REFERENCE FRAME BY VERY LONG BASELINE INTERFEROMETRY
    Fey, A. L.
    Gordon, D.
    Jacobs, C. S.
    Ma, C.
    Gaume, R. A.
    Arias, E. F.
    Bianco, G.
    Boboltz, D. A.
    Boeckmann, S.
    Bolotin, S.
    Charlot, P.
    Collioud, A.
    Engelhardt, G.
    Gipson, J.
    Gontier, A. -M.
    Heinkelmann, R.
    Kurdubov, S.
    Lambert, S.
    Lytvyn, S.
    MacMillan, D. S.
    Malkin, Z.
    Nothnagel, A.
    Ojha, R.
    Skurikhina, E.
    Sokolova, J.
    Souchay, J.
    Sovers, O. J.
    Tesmer, V.
    Titov, O.
    Wang, G.
    Zharov, V.
    ASTRONOMICAL JOURNAL, 2015, 150 (02):
  • [40] Terrestrial reference frames and their internal accuracy at coordinate system level
    Kotsakis, Christopher
    Chatzinikos, Miltiadis
    JOURNAL OF GEODESY, 2023, 97 (11)