Consistent realization of Celestial and Terrestrial Reference Frames

被引:0
|
作者
Younghee Kwak
Mathis Bloßfeld
Ralf Schmid
Detlef Angermann
Michael Gerstl
Manuela Seitz
机构
[1] Deutsches Geodätisches Forschungsinstitut at the Technische Universität München (DGFI-TUM),
来源
Journal of Geodesy | 2018年 / 92卷
关键词
Celestial Reference Frame; Terrestrial Reference Frame; ICRF; ITRF; Inter-technique combination; VLBI; SLR; GNSS; EOP;
D O I
暂无
中图分类号
学科分类号
摘要
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of ΔUT1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \hbox {UT1}$$\end{document} results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}as. Moreover, the CRF is influenced by up to 50μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50~\upmu $$\end{document}as if the station coordinates and EOP are dominated by the satellite techniques.
引用
收藏
页码:1047 / 1061
页数:14
相关论文
共 50 条
  • [1] Consistent realization of Celestial and Terrestrial Reference Frames
    Kwak, Younghee
    Blossfeld, Mathis
    Schmid, Ralf
    Angermann, Detlef
    Gerstl, Michael
    Seitz, Manuela
    JOURNAL OF GEODESY, 2018, 92 (09) : 1047 - 1061
  • [2] Consistent Adjustment of Combined Terrestrial and Celestial Reference Frames
    Seitz, M.
    Steigenberger, P.
    Artz, T.
    EARTH ON THE EDGE: SCIENCE FOR A SUSTAINABLE PLANET, 2014, 139 : 215 - 221
  • [3] Atmospheric gradients and the VLBI terrestrial and celestial reference frames
    MacMillan, DS
    Ma, C
    GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (04) : 453 - 456
  • [4] Alternative Definitions of the Terrestrial Reference System and Its Realization in Reference Frames
    Drewes, H.
    Angermann, D.
    Seitz, M.
    REFERENCE FRAMES FOR APPLICATIONS IN GEOSCIENCES, 2013, 138 : 39 - 44
  • [5] VLBI celestial and terrestrial reference frames VIE2022b
    Krasna, H.
    Baldreich, L.
    Boehm, J.
    Boehm, S.
    Gruber, J.
    Hellerschmied, A.
    Jaron, F.
    Kern, L.
    Mayer, D.
    Nothnagel, A.
    Panzenboeck, O.
    Wolf, H.
    ASTRONOMY & ASTROPHYSICS, 2023, 679
  • [6] Atmospheric Effects on VLBI-Derived Terrestrial and Celestial Reference Frames
    Krasna , Hana
    Boehm, Johannes
    Plank, Lucia
    Nilsson, Tobias
    Schuh, Harald
    EARTH ON THE EDGE: SCIENCE FOR A SUSTAINABLE PLANET, 2014, 139 : 203 - 208
  • [7] On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames
    Belda, Santiago
    Heinkelmann, Robert
    Ferrandiz, Jose M.
    Nilsson, Tobias
    Schuh, Harald
    JOURNAL OF GEODESY, 2017, 91 (02) : 135 - 149
  • [8] On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames
    Santiago Belda
    Robert Heinkelmann
    José M. Ferrándiz
    Tobias Nilsson
    Harald Schuh
    Journal of Geodesy, 2017, 91 : 135 - 149
  • [9] On the impact of local ties on the datum realization of global terrestrial reference frames
    Susanne Glaser
    Rolf König
    Karl Hans Neumayer
    Tobias Nilsson
    Robert Heinkelmann
    Frank Flechtner
    Harald Schuh
    Journal of Geodesy, 2019, 93 : 655 - 667
  • [10] On the impact of local ties on the datum realization of global terrestrial reference frames
    Glaser, Susanne
    Koenig, Rolf
    Neumayer, Karl Hans
    Nilsson, Tobias
    Heinkelmann, Robert
    Flechtner, Frank
    Schuh, Harald
    JOURNAL OF GEODESY, 2019, 93 (05) : 655 - 667