Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

被引:0
|
作者
Peng Chen
Alfio Quarteroni
Gianluigi Rozza
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Modelling and Scientific Computing, CMCS, Mathematics Institute of Computational Science and Engineering, MATHICSE
[2] EPFL,Modellistica e Calcolo Scientifico, MOX, Dipartimento di Matematica F. Brioschi
[3] Politecnico di Milano,SISSA MathLab
[4] International School for Advanced Studies,undefined
来源
关键词
Stochastic elliptic problem; Reduced basis method; Stochastic collocation method; Sparse grid; Greedy algorithm ; Offline–online computational decomposition; Convergence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} to moderate dimensions O(10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(10)$$\end{document} and to high dimensions O(100)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(100)$$\end{document}. The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.
引用
收藏
页码:187 / 216
页数:29
相关论文
共 50 条
  • [31] A Numerical Comparison Between Quasi-Monte Carlo and Sparse Grid Stochastic Collocation Methods
    Azevedo, Juarez dos Santos
    Oliveira, Saulo Pomponet
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 12 (04) : 1051 - 1069
  • [32] Randomized reduced basis methods for parameterized fractional elliptic PDEs
    Antil, Harbir
    Saibaba, Arvind K.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 227
  • [33] Multi-element stochastic reduced basis methods
    Mohan, P. Surya
    Nair, Prasanth B.
    Keane, Andy J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (17-18) : 1495 - 1506
  • [34] Radial basis collocation method and quasi-Newton iteration for nonlinear elliptic problems
    Hu, H. Y.
    Chen, J. S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 991 - 1017
  • [35] Comparison of Four Multiscale Methods for Elliptic Problems
    Wu, Y. T.
    Nie, Y. F.
    Yang, Z. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 99 (04): : 297 - 325
  • [36] A Stochastic Collocation Method Combined With a Reduced Basis Method to Compute Uncertainties in Numerical Dosimetry
    Drissaoui, Mohammed Amine
    Lanteri, Stephane
    Leveque, Philippe
    Musy, Francois
    Nicolas, Laurent
    Perrussel, Ronan
    Voyer, Damien
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 563 - 566
  • [37] A CERTIFIED REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Kaercher, Mark
    Grepl, Martin A.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (02) : 416 - 441
  • [38] REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC ADVECTION-REACTION PROBLEMS
    Dede, Luca
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (01) : 122 - 148
  • [39] REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC ADVECTION-REACTION PROBLEMS
    Luca Dedè
    JournalofComputationalMathematics, 2010, 28 (01) : 122 - 148
  • [40] A reduced basis approach for some weakly stochastic multiscale problems
    Le Bris, Claude
    Thomines, Florian
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (05) : 657 - 672