Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

被引:0
|
作者
Peng Chen
Alfio Quarteroni
Gianluigi Rozza
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Modelling and Scientific Computing, CMCS, Mathematics Institute of Computational Science and Engineering, MATHICSE
[2] EPFL,Modellistica e Calcolo Scientifico, MOX, Dipartimento di Matematica F. Brioschi
[3] Politecnico di Milano,SISSA MathLab
[4] International School for Advanced Studies,undefined
来源
关键词
Stochastic elliptic problem; Reduced basis method; Stochastic collocation method; Sparse grid; Greedy algorithm ; Offline–online computational decomposition; Convergence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} to moderate dimensions O(10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(10)$$\end{document} and to high dimensions O(100)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(100)$$\end{document}. The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.
引用
收藏
页码:187 / 216
页数:29
相关论文
共 50 条
  • [21] A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input
    Zhang, Qian
    Li, Zhilin
    Zhang, Zhiyue
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (01) : 262 - 280
  • [22] Collocation methods for continuation problems in non-linear elliptic PDEs
    Doedel, E
    Sharifi, H
    CONTINUATION METHODS IN FLUID DYNAMICS, 2000, 74 : 105 - 118
  • [23] COLLOCATION METHODS FOR CAUCHY PROBLEMS OF ELLIPTIC OPERATORS VIA CONDITIONAL STABILITIES
    Li, Siqing
    Ling, Leevan
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (03) : 785 - 805
  • [24] Fourier Collocation and Reduced Basis Methods for Fast Modeling of Compressible Flows
    Yu, Jian
    Ray, Deep
    Hesthaven, Jan S.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (03) : 595 - 637
  • [25] Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients
    Elman, Howard C.
    Liao, Qifeng
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 192 - 217
  • [26] REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Negri, Federico
    Rozza, Gianluigi
    Manzoni, Andrea
    Quarteroni, Alfio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : A2316 - A2340
  • [27] SIMULTANEOUS REDUCED BASIS APPROXIMATION OF PARAMETERIZED ELLIPTIC EIGENVALUE PROBLEMS
    Horger, Thomas
    Wohlmuth, Barbara
    Dickopf, Thomas
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 443 - 465
  • [28] A DISCONTINUOUS GALERKIN REDUCED BASIS ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Pacciarini, Paolo
    Quarteroni, Alfio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 337 - 360
  • [29] A COMPARISON OF COLLOCATION METHODS FOR SOLVING DYNAMIC OPTIMIZATION PROBLEMS
    TIEU, D
    CLUETT, WR
    PENLIDIS, A
    COMPUTERS & CHEMICAL ENGINEERING, 1995, 19 (04) : 375 - 381
  • [30] A comparison between global and local orthogonal collocation methods for solving optimal control problems
    Huntington, Geoffrey T.
    Rao, Anil V.
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 1539 - 1546