Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

被引:0
|
作者
Peng Chen
Alfio Quarteroni
Gianluigi Rozza
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Modelling and Scientific Computing, CMCS, Mathematics Institute of Computational Science and Engineering, MATHICSE
[2] EPFL,Modellistica e Calcolo Scientifico, MOX, Dipartimento di Matematica F. Brioschi
[3] Politecnico di Milano,SISSA MathLab
[4] International School for Advanced Studies,undefined
来源
关键词
Stochastic elliptic problem; Reduced basis method; Stochastic collocation method; Sparse grid; Greedy algorithm ; Offline–online computational decomposition; Convergence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} to moderate dimensions O(10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(10)$$\end{document} and to high dimensions O(100)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(100)$$\end{document}. The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.
引用
收藏
页码:187 / 216
页数:29
相关论文
共 50 条
  • [1] Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems
    Chen, Peng
    Quarteroni, Alfio
    Rozza, Gianluigi
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (01) : 187 - 216
  • [2] Radial basis collocation methods for elliptic boundary value problems
    Hu, HY
    Li, ZC
    Cheng, AHD
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) : 289 - 320
  • [3] Reduced Collocation Methods: Reduced Basis Methods in the Collocation Framework
    Yanlai Chen
    Sigal Gottlieb
    Journal of Scientific Computing, 2013, 55 : 718 - 737
  • [4] Reduced Collocation Methods: Reduced Basis Methods in the Collocation Framework
    Chen, Yanlai
    Gottlieb, Sigal
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 718 - 737
  • [5] REDUCED BASIS MULTISCALE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 316 - 337
  • [6] Collocation methods based on radial basis functions for solving stochastic Poisson problems
    Chantasiriwan, Somchart
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2007, 23 (03): : 169 - 178
  • [7] Stochastic reduced basis methods
    Nair, PB
    Keane, AJ
    AIAA JOURNAL, 2002, 40 (08) : 1653 - 1664
  • [8] Weighted Reduced Basis Method for Stochastic Optimal Control Problems with Elliptic PDE Constraint
    Chen, Peng
    Quarteroni, Alfio
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01): : 364 - 396
  • [9] Reduced Basis Techniques for Stochastic Problems
    Boyaval, S.
    Le Bris, C.
    Lelievre, T.
    Maday, Y.
    Nguyen, N. C.
    Patera, A. T.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) : 435 - 454
  • [10] Reduced Basis Techniques for Stochastic Problems
    S. Boyaval
    C. Le Bris
    T. Lelièvre
    Y. Maday
    N. C. Nguyen
    A. T. Patera
    Archives of Computational Methods in Engineering, 2010, 17 : 435 - 454