Triangular modular curves of small genus

被引:0
|
作者
Juanita Duque-Rosero
John Voight
机构
[1] Dartmouth College,Department of Mathematics
来源
关键词
Triangle groups; Modular curves; Congruence subgroups; Belyi maps;
D O I
暂无
中图分类号
学科分类号
摘要
Triangular modular curves are a generalization of modular curves that arise from quotients of the upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves also arise naturally as a source of Belyi maps with monodromy PGL2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PGL}_2(\mathbb {F}_q)$$\end{document} or PSL2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}_2(\mathbb {F}_q)$$\end{document}. We present a computational approach to enumerate Borel-type triangular modular curves of low genus, and we carry out this enumeration for prime level and small genus.
引用
收藏
相关论文
共 50 条
  • [41] Foliations on Modular Curves
    Igor V. Nikolaev
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 85 - 92
  • [42] Tetragonal modular curves
    Jeon, D
    Park, E
    ACTA ARITHMETICA, 2005, 120 (03) : 307 - 312
  • [43] Hodge polynomials of SL-character varieties for curves of small genus
    Logares, Marina
    Munoz, Vicente
    Newstead, P. E.
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02): : 635 - 703
  • [44] THE UNIRATIONALITY OF HURWITZ SPACES OF 6-GONAL CURVES OF SMALL GENUS
    Geiss, Florian
    DOCUMENTA MATHEMATICA, 2012, 17 : 627 - 640
  • [45] Bielliptic modular curves
    Bars, F
    JOURNAL OF NUMBER THEORY, 1999, 76 (01) : 154 - 165
  • [46] Foliations on Modular Curves
    Nikolaev, Igor V.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 85 - 92
  • [47] Trigonal modular curves
    Hasegawa, Y
    Shimura, M
    ACTA ARITHMETICA, 1999, 88 (02) : 129 - 140
  • [48] GENERIC CURVES OF SMALL GENUS IN P3 ARE OF MAXIMAL RANK
    BALLICO, E
    ELLIA, P
    MATHEMATISCHE ANNALEN, 1983, 264 (02) : 211 - 225
  • [49] Binary curves of small fixed genus and gonality with many rational points
    Faber, Xander
    Grantham, Jon
    JOURNAL OF ALGEBRA, 2022, 597 : 24 - 46
  • [50] Symmetric triangular algorithms for curves
    Seidel, Hans-Peter, 1600, (07): : 1 - 4