Triangular modular curves of small genus

被引:0
|
作者
Juanita Duque-Rosero
John Voight
机构
[1] Dartmouth College,Department of Mathematics
来源
关键词
Triangle groups; Modular curves; Congruence subgroups; Belyi maps;
D O I
暂无
中图分类号
学科分类号
摘要
Triangular modular curves are a generalization of modular curves that arise from quotients of the upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves also arise naturally as a source of Belyi maps with monodromy PGL2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PGL}_2(\mathbb {F}_q)$$\end{document} or PSL2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}_2(\mathbb {F}_q)$$\end{document}. We present a computational approach to enumerate Borel-type triangular modular curves of low genus, and we carry out this enumeration for prime level and small genus.
引用
收藏
相关论文
共 50 条