Triangular modular curves of small genus

被引:0
|
作者
Juanita Duque-Rosero
John Voight
机构
[1] Dartmouth College,Department of Mathematics
来源
关键词
Triangle groups; Modular curves; Congruence subgroups; Belyi maps;
D O I
暂无
中图分类号
学科分类号
摘要
Triangular modular curves are a generalization of modular curves that arise from quotients of the upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves also arise naturally as a source of Belyi maps with monodromy PGL2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PGL}_2(\mathbb {F}_q)$$\end{document} or PSL2(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}_2(\mathbb {F}_q)$$\end{document}. We present a computational approach to enumerate Borel-type triangular modular curves of low genus, and we carry out this enumeration for prime level and small genus.
引用
收藏
相关论文
共 50 条
  • [1] Triangular modular curves of small genus
    Duque-Rosero, Juanita
    Voight, John
    RESEARCH IN NUMBER THEORY, 2023, 9 (01)
  • [2] Systolic length of triangular modular curves
    Schein, Michael M.
    Shoan, Amir
    JOURNAL OF NUMBER THEORY, 2022, 239 : 462 - 488
  • [3] Modular curves of genus 2
    González-Jiménez, E
    González, J
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 397 - 418
  • [4] ON THE GENUS OF CERTAIN DRINFELD MODULAR CURVES
    Kim, Chang Heon
    Jeon, Daeyeol
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (02): : 239 - 246
  • [5] THE GENUS OF THE DRINFELD MODULAR-CURVES
    GEKELER, EU
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (19): : 647 - 650
  • [7] Congruence covers of triangular modular curves and their Galois groups
    Takei, Luiz Kazuo
    ACTA ARITHMETICA, 2016, 175 (02) : 101 - 117
  • [8] Modular invariants for genus 3 hyperelliptic curves
    Sorina Ionica
    Pınar Kılıçer
    Kristin Lauter
    Elisa Lorenzo García
    Adelina Mânzăţeanu
    Maike Massierer
    Christelle Vincent
    Research in Number Theory, 2019, 5
  • [9] THE MODULAR VARIETY OF HYPERELLIPTIC CURVES OF GENUS THREE
    Freitag, Eberhard
    Manni, Riccardo Salvati
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) : 281 - 312
  • [10] Modular invariants for genus 3 hyperelliptic curves
    Ionica, Sorina
    Kilicer, Pinar
    Lauter, Kristin
    Garcia, Elisa Lorenzo
    Manzateanu, Adelina
    Massierer, Maike
    Vincent, Christelle
    RESEARCH IN NUMBER THEORY, 2019, 5 (01)