On Baxter's Q-Operator for the XXX Spin Chain

被引:0
|
作者
G. P. Pronko
机构
[1] Institute for High Energy Physics,
[2] Protvino,undefined
[3] Moscow reg. 142284,undefined
[4] Russia and International Solvay Institute,undefined
[5] Brussels,undefined
[6] Belgium,undefined
来源
关键词
Suggested Approach; Baxter Operator; Nondiagonal Part;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the construction of Baxter's Q-operator. The suggested approach leads to the one-parametric family of Q-operators, satisfying wronskian-type relations. Also we have found the generalization of Baxter operators, which defines the nondiagonal part of the monodromy.
引用
收藏
页码:687 / 701
页数:14
相关论文
共 50 条
  • [21] Q-operator and factorised separation chain for Jack polynomials
    Kuznetsov, VB
    Mangazeev, VV
    Sklyanin, EK
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (3-4): : 451 - 482
  • [22] A shortcut to the Q-operator
    Bazhanov, Vladimir V.
    Lukowski, Tomasz
    Meneghelli, Carlo
    Staudacher, Matthias
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [23] A Q-Operator for Open Spin Chains II: Boundary Factorization
    Cooper, Alec
    Vlaar, Bart
    Weston, Robert
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (05)
  • [24] Noncompact Heisenberg spin magnets from high-energy QCD -: I.: Baxter Q-operator and separation of variables
    Derkachov, SÉ
    Korchemsky, GP
    Manashov, A
    [J]. NUCLEAR PHYSICS B, 2001, 617 (1-3) : 375 - 440
  • [25] Q-operator and the Drinfeld equation
    Belavin, AA
    Usmanov, RA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (03) : 757 - 764
  • [26] Reconstruction of Baxter Q-operator from Sklyanin SOV for cyclic representations of integrable quantum models
    Niccoli, G.
    [J]. NUCLEAR PHYSICS B, 2010, 835 (03) : 263 - 283
  • [27] A Q-operator for the quantum transfer matrix
    Korff, Christian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (14) : 3749 - 3774
  • [28] Q-Operator and the Drinfeld Equation
    A. A. Belavin
    R. A. Usmanov
    [J]. Theoretical and Mathematical Physics, 2003, 135 : 757 - 764
  • [29] NOTE ON A q-OPERATOR IDENTITY
    Fang, Jian-Ping
    [J]. ARS COMBINATORIA, 2012, 105 : 395 - 401
  • [30] The Q-Operator for the Quantum NLS Model
    Belousov N.M.
    Derkachov S.E.
    [J]. Journal of Mathematical Sciences, 2019, 242 (5) : 608 - 627