A shortcut to the Q-operator

被引:72
|
作者
Bazhanov, Vladimir V. [1 ]
Lukowski, Tomasz [2 ,3 ]
Meneghelli, Carlo [3 ]
Staudacher, Matthias [3 ,4 ,5 ]
机构
[1] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
[4] Humboldt Univ, Inst Matemat, D-10099 Berlin, Germany
[5] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany
关键词
algebraic structures of integrable models; integrable spin chains (vertex models); quantum integrability (Bethe ansatz); symmetries of integrable models; CONFORMAL FIELD-THEORY; BAXTERS Q-OPERATOR; INTEGRABLE STRUCTURE; PARTITION-FUNCTION; TWIST-3; OPERATORS; TRANSFER-MATRICES; 8-VERTEX MODEL; MULTICOLOR QCD; SPIN; EQUATIONS;
D O I
10.1088/1742-5468/2010/11/P11002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Baxter's Q-operator is generally believed to be the most powerful tool for the exact diagonalization of integrable models. Curiously, it has hitherto not yet been properly constructed in the simplest such system, the compact spin-1/2 Heisenberg-Bethe XXX spin chain. Here we attempt to fill this gap and show how two linearly independent operatorial solutions to Baxter's TQ equation may be constructed as commuting transfer matrices if a twist field is present. The latter are obtained by tracing over infinitely many oscillator states living in the auxiliary channel of an associated monodromy matrix. We furthermore compare our approach to and differentiate it from earlier articles addressing the problem of the construction of the Q-operator for the XXX chain. Finally we speculate on the importance of Q-operators for the physical interpretation of recent proposals for the Y-system of AdS/CFT.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Q-operator and the Drinfeld equation
    Belavin, AA
    Usmanov, RA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (03) : 757 - 764
  • [2] A Q-operator for the quantum transfer matrix
    Korff, Christian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (14) : 3749 - 3774
  • [3] Q-Operator and the Drinfeld Equation
    A. A. Belavin
    R. A. Usmanov
    [J]. Theoretical and Mathematical Physics, 2003, 135 : 757 - 764
  • [4] NOTE ON A q-OPERATOR IDENTITY
    Fang, Jian-Ping
    [J]. ARS COMBINATORIA, 2012, 105 : 395 - 401
  • [5] A Q-operator for the twisted XXX model
    Korff, Christian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13): : 3203 - 3219
  • [6] Baxter Q-operator and functional relations
    Ovchinnikov, A. A.
    [J]. PHYSICS LETTERS B, 2015, 742 : 335 - 339
  • [7] The Q-Operator for the Quantum NLS Model
    Belousov N.M.
    Derkachov S.E.
    [J]. Journal of Mathematical Sciences, 2019, 242 (5) : 608 - 627
  • [8] Bethe Ansatz and Q-operator for the open ASEP
    Lazarescu, Alexandre
    Pasquier, Vincent
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (29)
  • [9] Two q-difference equations and q-operator identities
    Liu, Zhi-Guo
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (11) : 1293 - 1307
  • [10] Q-Operator and Fusion Relations for U q (C (2)(2))
    Ip, Ivan Chi-Ho
    Zeitlin, Anton M.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (08) : 1019 - 1043