Integrable discretization and deformation of the nonholonomic Chaplygin ball

被引:0
|
作者
Andrey V. Tsiganov
机构
[1] St. Petersburg State University,
来源
关键词
nonholonomic systems; Abel quadratures; arithmetic of divisors; 37J60; 37K20; 37J35; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
引用
收藏
页码:353 / 367
页数:14
相关论文
共 50 条
  • [41] Generalized Chaplygin equations for nonholonomic systems on time scales
    金世欣
    张毅
    Chinese Physics B, 2018, (02) : 271 - 276
  • [42] On Integrable Perturbations of Some Nonholonomic Systems
    Tsiganov, Andrey V.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [43] A new integrable system of nonholonomic mechanics
    A. V. Borisov
    I. S. Mamaev
    Doklady Physics, 2015, 60 : 269 - 271
  • [44] A new integrable system of nonholonomic mechanics
    Borisov, A. V.
    Mamaev, I. S.
    DOKLADY PHYSICS, 2015, 60 (06) : 269 - 271
  • [45] Integrable geodesic flows of nonholonomic metrics
    Taimanov I.A.
    Journal of Dynamical and Control Systems, 1997, 3 (1) : 129 - 147
  • [46] Dynamics of the Chaplygin ball on a rotating plane
    I. A. Bizyaev
    A. V. Borisov
    I. S. Mamaev
    Russian Journal of Mathematical Physics, 2018, 25 : 423 - 433
  • [47] Motion of chaplygin ball on an inclined plane
    A. V. Borisov
    I. S. Mamaev
    Doklady Physics, 2006, 51 : 73 - 76
  • [48] Motion of Chaplygin ball on an inclined plane
    Borisov, AV
    Mamaev, IS
    DOKLADY PHYSICS, 2006, 51 (02) : 73 - 76
  • [49] Dynamics of the Chaplygin ball on a rotating plane
    Bizyaev, I. A.
    Borisov, A. V.
    Mamaev, I. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (04) : 423 - 433
  • [50] On the Lie integrability theorem for the Chaplygin ball
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (02): : 185 - 197