Integrable discretization and deformation of the nonholonomic Chaplygin ball

被引:0
|
作者
Andrey V. Tsiganov
机构
[1] St. Petersburg State University,
来源
关键词
nonholonomic systems; Abel quadratures; arithmetic of divisors; 37J60; 37K20; 37J35; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
引用
收藏
页码:353 / 367
页数:14
相关论文
共 50 条