Original Problem;
WENO Scheme;
Spatial Operator;
Grid Scheme;
Raznostnykh Skhem;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In the present paper, we suggest a version of the nonconformal finite-element method (a perturbed Galerkin method) for approximating a quasilinear convection-diffusion equation in divergence form. A grid scheme is constructed with the use of an approach based on the Galerkin-Petrov approximation to the mixed statement of the original problem. The separated coordinate approximation of the solution components for the mixed problem permits one to take into account the direction of convective transport and preserve the main properties of the spatial operator of the original problem. We prove the stability of the line method scheme and a two-layer weighted scheme for the original problem.
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Ignat, Liviu I.
Rossi, Julio D.
论文数: 0引用数: 0
h-index: 0
机构:Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
机构:
Chinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R ChinaChinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R China
Chung, Eric T.
Kalachikova, Uygulaana
论文数: 0引用数: 0
h-index: 0
机构:
North Eastern Fed Univ, Multiscale Model Reduct Lab, Yakutsk, RussiaChinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R China
Kalachikova, Uygulaana
Vasilyeva, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX USAChinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R China
Vasilyeva, Maria
Alekseev, Valentin
论文数: 0引用数: 0
h-index: 0
机构:
North Eastern Fed Univ, Multiscale Model Reduct Lab, Yakutsk, Russia
North Eastern Fed Univ, Yakutsk Branch, Reg Sci & Educ Math Ctr, Far Eastern Ctr Math Res, Yakutsk, RussiaChinese Univ Hong Kong CUHK, Dept Math, Hong Kong, Peoples R China