A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

被引:1
|
作者
R. F. Oulton
V. J. Sorger
D. A. Genov
D. F. P. Pile
X. Zhang
机构
[1] NSF Nanoscale Science and Engineering Center,
[2] 3112 Etcheverry Hall,undefined
[3] University of California,undefined
来源
Nature Photonics | 2008年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics.
引用
收藏
页码:496 / 500
页数:4
相关论文
共 50 条
  • [41] A long-range plasmonic optical waveguide corner mirror chip
    Markey, Laurent
    Vernoux, Christian
    Hammani, Kamal
    Arocas, Juan
    Weeber, Jean-Claude
    Dereux, Alain
    [J]. MICRO AND NANO ENGINEERING, 2020, 7
  • [42] Adjustable subwavelength localization in a hybrid plasmonic waveguide
    Belan, S.
    Vergeles, S.
    Vorobev, P.
    [J]. OPTICS EXPRESS, 2013, 21 (06): : 7427 - 7438
  • [43] Design and modeling of long-range hybrid plasmonic waveguides
    Ghosh, Rajib R.
    Das, Abhijit
    Thomas, Arun
    Jaiswal, Mangesh
    Dhawan, Anuj
    [J]. INTEGRATED OPTICS: DESIGN, DEVICES, SYSTEMS, AND APPLICATIONS V, 2019, 11031
  • [44] Long-range hybrid ridge and trench plasmonic waveguides
    Bian, Yusheng
    Gong, Qihuang
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (25)
  • [45] CMOS-Compatible Hybrid Plasmonic Waveguide for Subwavelength Light Confinement and On-Chip Integration
    Kim, Jin Tae
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (04) : 206 - 208
  • [46] Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement
    He, Xueqing
    Ning, Tigang
    Lu, Shaohua
    Zheng, Jingjing
    Li, Jing
    Li, Rujiang
    Pei, Li
    [J]. OPTICS EXPRESS, 2018, 26 (08): : 10109 - 10118
  • [47] Light propagation in nonuniform plasmonic subwavelength waveguide arrays
    Guasoni, Massimiliano
    Conforti, Matteo
    De Angelis, Costantino
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (06) : 1161 - 1168
  • [48] Dual Coupled Long-Range Hybrid Surface Plasmon Polariton Waveguide for Sub-Wavelength Confinement
    Wang, Yindi
    Wang, Shulong
    Zhao, Juanning
    Xue, Mingyuan
    [J]. MICROMACHINES, 2023, 14 (12)
  • [49] A Silicon-Based 3-D Hybrid Long-Range Plasmonic Waveguide for Nanophotonic Integration
    Chen, Lin
    Li, Xun
    Wang, Guoping
    Li, Wei
    Chen, Sihai
    Xiao, Long
    Gao, Dingshan
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (01) : 163 - 168
  • [50] Enhanced Optical Forces by Hybrid Long-Range Plasmonic Waveguides
    Chen, Lin
    Zhang, Tian
    Li, Xun
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (21) : 3432 - 3438